BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

))

)

)

)

IN THE MATTER OF:

AMENDMENTS TO 35 ILL. ADM. CODE 201, 202, AND 212

R 23-18(A)

(Rulemaking - Air)

NOTICE OF FILING

To: Attached Service List

PLEASE TAKE NOTICE that on this day, the 15th day of March, 2024, I caused to be filed with the Clerk of the Illinois Pollution Control Board **Second Pre-filed Testimony of Bryan Higgins** and a **Certificate of Service**, a true and correct copy of which is attached hereto and hereby served upon you.

/s/ Alexander Garel-Frantzen

David M. Loring Alexander J. Garel-Frantzen ARENTFOX SCHIFF LLP 233 South Wacker Drive, Suite 7100 Chicago, Illinois 60606 (312) 258-5521 David.Loring@afslaw.com Alex.Garel-Frantzen@afslaw.com

SERVI	CELIST		
Illinois Pollution Control Board			
Don Brown			
don.brown@illinois.gov	Illinois Environmental Protection Agency		
100 W. Randolph St., Suite 11-500	Dana Vetterhoffer		
Chicago, IL 60601	dana.vetterhoffer@illinois.gov		
	Gina Roccaforte		
Timothy Fox	Gina.Roccaforte@illinois.gov		
Tim.fox@illinois.gov	1021 North Grand Avenue East		
Chloe Salk	P.O. Box 19276		
Chloe.salk@illinois.gov	Springfield, IL 62794		
60 East Van Buren Street, Ste. 630			
Chicago, IL 60605			
Office of the Attorney General			
Jason James			
Jason.James@ilag.gov			
201 West Point Drive, Suite 7	Illinois Department of Natural Resources		
Belleville, IL 62226	Renee Snow - General Counsel		
	renee.snow@illinois.gov		
Molly Kordas	One Natural Resources Way		
molly.kordas@ilag.gov	Springfield, IL 62702		
Ann Marie A. Hanohano			
annmarie.hanohano@ilag.gov			
69 West Washington Street, Suite 1800			
Chicago, IL 60602	HonlarDroom LLC		
U.S. EPA - Region 5	HeplerBroom LLC Melissa S. Brown		
Michael Leslie	Melissa S. Brown Melissa.brown@heplerbroom.com		
leslie.michael@epa.gov	Alec Messina		
Ralph H. Metcalfe Federal Building	Alec.Messina@heplerbroom.com		
77 West Jackson Blvd.	4340 Acer Grove Drive		
Chicago, IL 60604	Springfield, IL 62711		
	Environmental Law and Policy Center		
Faith E. Bugel	David McEllis		
fbugel@gmail.com	dmcellis@elpc.org		
1004 Mohawk Rd.	35 E. Wacker Drive, Suite 1600		
Wilmette, IL 60091	Chicago, IL 60601		
Greater Chicago Legal Clinic, Inc.	McDermott, Will & Emery		
Keith I. Harley	Mark A. Bilut		
kharley@kentlaw.edu	mbilut@mwe.com		
211 West Wacker Drive, Suite 750	227 West Monroe Street		
Chicago, IL 60606	Chicago, IL 60606-5096		
IERG	Dynegy		
Kelly Thompson	Joshua R. More		

12thompson aiora ora	Joshua Mara Osfalaw som
kthompson@ierg.org	Joshua.More@afslaw.com
215 E. Adams St.	Sam Rasche
Springfield, IL 62701	Sam.Rasche@afslaw.com
	233 South Wacker Drive, Suite 7100
	Chicago, IL 60606
	Andrew N. Sawula
	Andrew.Sawula@afslaw.com
	One Westminster Place, Suite 200
	Lake Forest, IL 60045
East Dubuque Nitrogen Fertilizers, LLC	
Byron F. Taylor	
Bftaylor@sidley.com	
John M. Heyde	
jheyde@sidley.com	
One South Dearborn	
Chicago, Illinois 60603	

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

))

)

)))

IN THE MATTER OF:

AMENDMENTS TO 35 ILL. ADM. CODE 201, 202, AND 212

R 23-18(A)

(Rulemaking – Air)

SECOND PRE-FILED TESTIMONY OF BRYAN HIGGINS

I. Introduction

My name is Bryan Higgins of Trinity Consultants ("Trinity"), and I am presenting testimony in this matter on behalf of Rain CII Carbon LLC ("Rain Carbon") in support of the Supplemental Technical Support Document ("Supplemental TSD") prepared with my colleague, Jeremias Szust. I am a Senior Consultant at Trinity and an expert in providing environmental compliance and permitting support to a variety of industries, and have worked extensively with Rain Carbon's coke calcining facility located at 12817 East 950th Avenue in Robinson, Illinois (the "Facility"). I previously submitted pre-filed testimony in this matter on September 5, 2023, and I testified at the First Hearing on September 27, 2023.

This supplemental testimony is being submitted in support of Rain Carbon's revised proposed amendments to the Illinois Administrative Code to provide alternative emission limits and standards ("AELs") applicable to the Facility's coke calcining kilns during periods of startup, malfunction, and breakdown ("SMB") (the "Revised Proposed AELs"). The Revised Proposed AELs are narrowly tailored and provide AELs for particulate matter ("PM") during SMB and AELs for opacity and for volatile organic materials ("VOM") during periods of startup. As demonstrated in the Supplemental TSD, Rain Carbon's Revised Proposed AELs will not result in a degradation in air quality and will not otherwise impact Illinois EPA's Section 110(1) demonstration under the Clean Air Act (the "CAA").

The Supplemental TSD submitted in conjunction with this testimony as <u>Exhibit 1</u> provides a detailed discussion of the air quality modeling and analysis used to demonstrate that Rain Carbon's Revised Proposed AELs will have an insignificant impact on air quality.

Following Illinois EPA's review of the initial TSD, I participated in a number of meetings and discussions with Illinois EPA on behalf of Rain Carbon to address concerns raised by Illinois EPA regarding the modeling inputs for PM and VOM, and to discuss additional modeling methodologies to satisfy the requirements of Section 110(1) of the CAA. The following testimony provides an overview of the *changes and additions* to the PM and VOM modeling¹ that are reflected in the Supplemental TSD:

- First, with respect to VOM, the Method 25A test results from the July 2023 engineering study were converted from 'as propane' to 'as carbon' to represent the worst-case potential VOM emission rate from the kilns during start-up. This approach served to significantly increase the annualized VOM emission rate used to compare the worst-case VOM emissions during start-up to the Modeled Emission Rates for Precursors (MERPs) for the secondary formation of ozone from precursor pollutants (in this case, VOM).
- 2. As was the result in the initial TSD, the more conservative annualized VOM emission rate utilized in the Supplemental TSD continues to demonstrate that the potential contribution to ozone from VOM emissions from Rain Carbon's kilns during start-up is orders of magnitude less than what constitutes a significant contribution. Therefore, the modeling confirms that Rain Carbon's Revised Proposed AEL for VOM that allows for a 12-hour averaging period

¹*Note:* No changes to Section 2 of the Supplemental TSD discussing opacity were made, other than to provide additional justification for the averaging period proposed in Rain Carbon's original AEL for opacity.

for VOM emissions during start-up will not interfere with the Ozone NAAQS in accordance with Section 110(1) of the CAA.

- 3. Second, with respect to PM, a number of changes were made to the model inputs and modeling approach to ensure that worst-case impacts from the generation of PM emissions during SMB events were fully and accurately modeled. Additional PM emissions data was generated from the July 2023 engineering study by using a third-order polynomial curve to derive maximum PM emissions from approximately 1,300°F to 1,800°F, which was not collected during the study. This resulted in a conservative interpolated maximum PM emission rate for use in the model that reflects the entire range of pyroscrubber inlet temperatures experienced during SMB events.
- 4. In addition, EPA AP-42 particle size distribution factors were used to speciate the PM emissions data from the July 2023 engineering study into PM₁₀ and PM_{2.5} maximum emission rates. The speciated emissions rates were utilized in the model to compare against the corresponding significant impact levels ("SILs") for PM₁₀ NAAQS and PM_{2.5} NAAQS. This had the effect of creating a model that more accurately represented the maximum concentration of PM₁₀ and PM_{2.5} emissions during SMB events.
- 5. Further, an alternative approach was utilized in the model to appropriately and accurately account for the intermittent and unpredictable nature of SMB events. Based upon an EPA-approved methodology used to model start-up and shutdown events for the 1-hour Nitrogen Dioxide NAAQS, an average hourly rate approach was used to adjust the maximum hourly PM₁₀ and PM_{2.5} emission rates based on the frequency that those hours will occur during a calendar year. As detailed in Rain Carbon's Supplemental Response to Illinois EPA's Comments (submitted concurrently with this Supplemental TSD), Rain Carbon set forth a

3

Revised Proposed AEL for PM that limits maximum PM emissions to 300 hours per kiln per year during SMB. Therefore, the maximum hourly PM_{10} and $PM_{2.5}$ emission rates were adjusted downward to reflect this limitation while allowing the model to assess the impact of such rates across all meteorological conditions (*i.e.*, every hour over the course of five calendar years). The resulting model avoids modeled impacts that are unrealistically high compared to actual impacts realistically expected for SMB events.

- 6. Lastly, to add additional conservativeness to the PM modeling, the modeling was run with only the SMB PM₁₀ and PM_{2.5} emission rates. Baseline emission rates (*i.e.*, emissions generated during non-SMB operations) were excluded from consideration in evaluating the modeled impact of SMB events.
- 7. As was the result under the initial TSD, the supplemental PM modeling results presented in the Supplemental TSD continue to model impacts far-below the respective SILs for the PM₁₀ 24-hour NAAQS, the PM_{2.5} 24-hour NAAQS, and the PM_{2.5} Annual NAAQS. Consequently, the modeling demonstrates that the Proposed Revised AEL for PM will not interfere with the applicable NAAQS in accordance with Section 110(1) of the CAA.

Dated: March 15, 2024

EXHIBIT 1

SUPPLEMENTAL TECHNICAL SUPPORT DOCUMENT

Rain CII Carbon LLC – Robinson Plant

Prepared By: Bryan Higgins – Senior Consultant Jeremias Szust – Managing Consultant

> TRINITY CONSULTANTS 16252 Westwoods Business Park Ellisville, MO 63021 (636) 530 - 4600

> > March 15, 2024

TABLE OF CONTENTS

1.	INTE	RODUC	TION	1-1
2 .	OPA	СІТҮ	:	2-1
3.	VOL/ 3.1 3.2 3.3 3.4 3.5	Engin Extra Mode MERP	DRGANIC MATTER eering Study polated Emission Rate led Emission Rates for Precursors s View Qlik and Hypothetical Source Selection sment Approach and Results	3-2 3-3 3-4
4.	PAR 4.1 4.2 4.3	Engin Corre 4.2.1	ATE MATTER 4 eering Study	4-2 4-3 4-4 4-5 4-5 4-7 4-7 4-7 4-9 4-9 4-9
AP	PENC	DIX A. A	AIRSOURCE STACK TESTING REPORT	A-1

LIST OF FIGURES

Figure 3-1. THC & Temperature Correlation (as propane)	3-2
Figure 3-2. THC & Temperature Correlation (as carbon)	3-3
Figure 3-3. MERPs View Qlik Hypothetical Sources Near Robinson, IL	3-4
Figure 4-1. PM & Temperature Correlation	4-2
Figure 4-2. General Model Overview	4-6
Figure 4-3. Receptor Grid and Boundaries	4-8
Figure 4-4. PM ₁₀ 24-Hour Modeling Results Compared to NAAQS	4-11
Figure 4-5. PM ₁₀ 24-Hour Modeling Results Compared to SIL	4-12
Figure 4-6. PM _{2.5} 24-Hour Modeling Results Compared to NAAQS	4-12
Figure 4-7. PM _{2.5} 24-Hour Modeling Results Compared to SIL	4-13
Figure 4-8. PM _{2.5} Annual Modeling Results Compared to NAAQS	4-13
Figure 4-9. PM _{2.5} Annual Modeling Results Compared to SIL	4-14

LIST OF TABLES

Table 2-1. Opacity Observation Results	2-1
Table 3-1. VOM Sampling Results	3-1
Table 3-2. 8-Hour Ozone MERPs Data for Boone County, IN	3-5
Table 3-3. 8-Hour Ozone MERPs Data for Christian County, IL	3-5
Table 3-4. 8-Hour Ozone MERPs Data for Dubois County, IN	3-5
Table 3-5. Secondary 8-Hour Ozone MERPs Analysis	3-6
Table 4-1. Particulate Matter Sampling Results	4-1
Table 4-2. Evansville Regional Airport Meteorological Data Valid Hours	4-9
Table 4-3. Release Parameters for Modeled Point Sources	4-10
Table 4-4. Air Dispersion Modeling Results	4-10

1. INTRODUCTION

Trinity Consultants, Inc. (Trinity) is providing this Technical Support Document (TSD) to provide detailed data, analyses, and conclusions supporting the proposed rule R23-18A, as it pertains to Rain CII Carbon LLC (Rain Carbon). Rain Carbon's coke calcining process generates exhaust gases from the heating of green coke in a rotary kiln. The exhaust gases contain volatile organic matter (VOM) and particulate matter (PM) and are routed to a pyroscrubber air pollution control device to reduce the amount of VOM and PM in the exhaust gas before being released to the atmosphere via the stack attached to the pyroscrubber. If the temperature at the inlet to the pyroscrubber is at least 1,800°F (3-hour rolling average¹), then Rain Carbon's kilns are able to comply with the applicable opacity, VOM, and PM limitations. There are instances during which it is not possible to maintain this temperature including start-up, malfunction, and breakdown (SMB). When the temperature falls below 1,800°F, the probability of achieving compliance with the applicable emission limits decreases.

In R23-18A, Rain Carbon is proposing emission standards for opacity, VOM, and PM applicable to the two kilns at Rain Carbon's facility during certain periods of SMB. Rain Carbon engaged Trinity to conduct modeling analyses to demonstrate that the potential impact of the proposed emission standards is insignificant and, therefore, would not interfere with the PM and ozone National Ambient Air Quality Standards (NAAQS)² in accordance with Section 110(I) of the Clean Air Act (42 U.S.C. § 7410(I)).

This TSD provides the details about the collection of emissions data from in-stack sampling, air dispersion modeling, and results analysis which demonstrates that the potential impacts on the environment related to each of the proposed rulemakings is insignificant. Note that this TSD is supplementing the original TSD which was filed with the Illinois Pollution Control Board (IPCB) on September 5, 2023. While Rain Carbon believes that the original TSD sufficiently demonstrated non-interference with the affected NAAQS, this TSD presents additional analyses for PM and VOM which provide supplemental demonstrations of non-interference with the affected NAAQS.

¹ When the pyroscrubber inlet temperature of 1,800°F is referenced throughout this document, it is based on a 3-hour rolling average.

² Rain Carbon's Facility is located in Crawford County, Illinois. Crawford County is in attainment with the 2015 8-hour ozone NAAQS. Similarly, Crawford County is in attainment of the 2012 PM NAAQS (including the annual $PM_{2.5}$ standard, the 1997 24-hour $PM_{2.5}$ standard and the 2006 24-hour PM_{10} standard).

2. OPACITY

For opacity, Rain Carbon has proposed a standard alternative to the standards in 35 III. Adm. Code 212.123 in the proposed rulemaking R23-18A. The current rule requires opacity to remain below 30% with an exception for short periods of higher opacity with specific restrictions. During normal operations³, Rain Carbon can maintain compliance with this limitation; however, during a kiln start-up, Rain Carbon is unable to consistently maintain compliance with this standard. Therefore, Rain Carbon is proposing to allow for up to three (3) hours during a kiln start-up for averaging opacity observation results. The analysis below demonstrates that the opacity observed during a kiln start-up may be relatively high during the beginning of a start-up but quickly dissipates.

On July 20, 2023, Rain Carbon contracted AirSource Technologies, Inc. (AirSource) to execute an engineering study during a single start-up of one of its two coke calcining kilns (Kiln 1) in order to obtain emissions data for VOM, opacity, and PM during start-up.

For opacity, AirSource conducted observations in accordance with USEPA Method 9 (40 C.F.R. 60, Appendix A-4). AirSource observed and recorded the opacity during five (5) separate 1-hour periods⁴ during a single start-up event. Results from the observations are summarized in Table 2-1 below.

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Average
Start/Stop Time	9:45-10:45	12:11-13:11	13:44-14:37	16:15-17:15	17:47-18:47	-
Maximum Opacity (%)	50	5	5	0	0	-
Average Opacity (%)	13.90	2.71	0.60	0.00	0.00	3.44

Table 2-1. Opacity Observation Results

Detailed field data sheets have been provided in Appendix A of this TSD (See Appendix C-3 of the AirSource report). During a typical start-up, once Rain Carbon begins to introduce feed coke into the kiln, opacity tends to be in excess of the current standard under 35 III. Adm. Code 212.123. For example, during the start-up performed on July 20, 2023, the maximum opacity reading was recorded at 50% and above 30% for more than 8-minutes in a 60-minute period.

During the first run of Method 9 observations performed on July 20, 2023, the inlet temperature to the pyroscrubber was approximately 700°F. Introduction of green coke into a kiln may begin at a pyroscrubber inlet temperature as low as 400°F. The results from the July 20, 2023, testing indicate that the relationship between pyroscrubber inlet temperature and opacity is such that higher opacity occurs at lower temperatures. Therefore, at the minimum pyroscrubber inlet temperature at which green coke can be introduced into a kiln, it can be expected that opacity would be higher than the results from Run 1 of the July 20, 2023, testing and span a longer period of time.

³ "Normal operations" refers to the kilns and associated equipment operating, but not in an SMB event.

⁴ Run 3 had a 53-minute duration. The observed opacity for 40 minutes preceding the end of Run 3 was zero, and the observed opacity following Run 3 was zero for 120 minutes.

3. VOLATILE ORGANIC MATTER

In the proposed rulemaking R23-18A, Rain Carbon has proposed an alternative emission standard which would allow Rain Carbon to demonstrate compliance with the existing 8 lbs/hr VOM limit (35 III. Adm. Code 215.301) as an average over 12 hours during kiln start-ups. The analysis below demonstrates that allowing Rain Carbon to operate under the proposed alternative standard would have an insignificant impact to the ozone NAAQS.

3.1 Engineering Study

In addition to observing opacity during the start-up of Kiln 1 that was performed on July 20, 2023, AirSource collected stack samples to obtain VOM emission rates. AirSource utilized USEPA Method 25A (40 CFR 60, Appendix A-7) to determine the concentration of total hydrocarbons (THC) in the stack gas stream during the Kiln 1 start-up. The mass emission rates during each run were calculated by AirSource and are presented in Table 3-1 below.

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Average
Gas Time Period	9:45-10:30	12:47-13:32	13:45-14:30	16:46-17:31	17:45-18:30	-
Flow Time Period	9:44-10:49	12:11-13:10	13:44-14:37	16:15-17:17	17:47-18:50	-
Emission Rate (lbs/hr) ('as propane')	2.41	0.482	0.419	0.400	0.300	0.80
Emission Rate (lbs/hr) ('as carbon')	7.23	1.446	1.257	1.2	0.9	2.41

Table 3-1. VOM Sampling Results

The allowable VOM emission rate pursuant to 35 III. Adm. Code 215.301 is 8 lbs/hr. Start-up events are inherently variable. While the start-up performed on July 20, 2023, generated emission rates that are below the regulatory limit, was procedurally representative of a typical start-up, and samples were collected based on USEPA methodology, a different set of sampling data could be collected during subsequent start-ups producing different results.

Similar to opacity measurements, the test results presented in Table 3-1 indicate that the VOM emission rate trends higher at lower pyroscrubber inlet temperatures. Since the pyroscrubber inlet temperature during Run 1 was nearly 700°F, and Rain Carbon can begin introducing green coke at a temperature as low as 400°F, it is expected that the maximum VOM emission rate from a kiln in start-up would be higher at lower temperatures, and therefore higher than the results from the July 20, 2023, stack testing.

The Method 25A testing conducted in July 2023 quantified the results "as propane", which is a common basis for quantifying results from this test method and is appropriate for determining VOC emission rates particularly when the source being sampled is of unknown composition. However, there are other options for expressing the results, including on an "as carbon" or "as methane" basis. Since Method 25A utilizes a flame ionization detector (FID) to count carbon atoms, and because a propane molecule contains three (3) carbon atoms, the results vary by a factor of three if you compare results on an "as propane" versus "as carbon" basis. This means that "as propane" results can be multiplied by three to be converted to "as

carbon" results⁵. Further, the measured concentrations are also attributed to the calibration gas utilized for the testing (e.g., propane calibration gas generates results "as propane"). Propane is the most typical calibration gas used for Method 25A sampling, is readily and commercially available in various concentration ranges and a number of Federal NESHAP standards have a THC standard defined on an "as propane" basis. Converting the test results to an "as carbon" basis represents the upper-end of the potential VOM emission rate from the kilns during start-up.

Note that the table presents a "Gas Time Period" and a "Flow Time Period". The gas time period represents the start/stop time of the sample gas collection for measuring VOM. This alone cannot be used to determine a mass emission rate of VOM, only a concentration. Stack flow data is needed to calculate emissions on a mass-basis, but stack flow data was not collected in sync with the VOM sampling start/stop time because this was instead being collected as part of the Method 5 testing. Since the sampling for both VOM and PM had similar start/stop times in the context of an entire kiln start-up period, the stack gas flow information collected during the PM sampling was used by AirSource to calculate the mass emission rates presented in Table 3-1.

3.2 Extrapolated Emission Rate

Based on the results presented in Table 3-1, an exponential decay relationship between pyroscrubber inlet temperature and VOM emissions can be derived. Figure 3-1 shows the exponential relationship curve, function, and coefficient of determination (R²) for the results on an "as propane" basis. Figure 3-2 shows the same on an "as carbon" basis.

⁵ Frequently Asked Questions (FAQs) for Method 25A (10/01/2020) https://www.epa.gov/sites/default/files/2016-08/documents/method25a_faq.pdf

Figure 3-2. THC & Temperature Correlation (as carbon)

Each correlation plot has been extrapolated past the lowest temperature from the July sampling results (700°F) to show the approximate THC emissions which could have been emitted if the kiln had started operation at 400°F, which is the minimum temperature at which green coke may be introduced to the kiln. At 400°F, the THC emissions on an "as propane" basis could be emitted at a rate of nearly 5 lbs/hr and the "as carbon" THC emission rate can reach nearly 15 lbs/hr. Calculating the precise emission rate at 400°F using the correlations results in 4.82 lbs/hr and 14.47 lbs/hr, respectively.

3.3 Modeled Emission Rates for Precursors

Modeled Emission Rates for Precursors (MERPs) can be used to analyze the impacts of secondary formation of ozone from precursor pollutants, in this case VOM. The USEPA used complex photochemical modeling to model hundreds of hypothetical emission points across the United States. Each hypothetical emission point is characterized by a stack height, annual emission rate, and additional factors unique to each specific geographic area. The results from each of the hypothetical models have been provided by the USEPA as a reference for determining impacts from existing or proposed emission points as a function of annual emission rate(s).

The VOM MERPs represent a level of increased precursor emissions that are not expected to contribute significantly to ozone formation. For this analysis, Trinity utilized the USEPA's MERPs guidance document⁶ to estimate the level of emissions that would have a significant impact on ozone concentrations. These emissions levels are compared to emission rates from the start-up emission rates (annualized) for purposes

⁶ "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM_{2.5} under the PSD Permitting Program," USEPA, April 30, 2019.

of demonstrating that allowing Rain Carbon to operate during start-up will not have a significant impact on ozone concentrations⁷.

3.4 MERPs View Qlik and Hypothetical Source Selection

To determine the appropriate MERP values for comparison, a hypothetical source must be selected from USEPA's MERPs View Qlik website⁸. Considering geographical proximity to the Rain Carbon Robinson facility, the three closest hypothetical sources available in the View Qlik website include Christian County, IL, Boone County, IN, and Dubois County, IN, as shown in Figure 3-3 below.

Figure 3-3. MERPs View Qlik Hypothetical Sources Near Robinson, IL

⁷ Note that for this assessment, Trinity considers only VOM to be a potential contributor to increased ozone impacts while recognizing that, in general, nitrogen oxides (NO_X) can have an impact on ozone formation too. During start-up, VOM has potential to have increased emissions, relative to normal operations due to reduced control; however, NO_X are believed to be emitted at a lower rate during start-up, relative to normal operation. Additionally, Rain Carbon is not subject to NO_X emission standards; thus, it is not seeking any alternative standard for NO_x. Refer to *Zhu, B.; Shang, B.; Guo, X.; Wu, C.; Chen, X.; Zhao, L. Study on Combustion Characteristics and NO_X Formation in 600 MW Coal-Fired Boiler Based on Numerical Simulation. <i>Energies 2022* for additional information regarding NO_X emissions from combustion units.

⁸ https://www.epa.gov/scram/merps-view-qlik

The MERPs data is shown in tables below for each of the three locations.

Dreamager Emissions (tray) Steals (m) MEDD (tray)						
Table 3-2. 8-Hour Ozone MERPs Data for Boone County, IN						

Precursor	Emissions (tpy)	Stack (m)	MERP (tpy)
VOC	500	10	2,985

Table 3-3. 8-Hour Ozone MERPs Data for Christian County, IL

Precursor	Emissions (tpy)	Stack (m)	MERP (tpy)
VOC	500	10	7,222

Table 3-4.	8-Hour Ozone	MERPs Data	for Dubois	County, IN
1 4 10 10 0 11	O HIGH OLOHIO	menti o Bata		oou ,,

Precursor	Emissions (tpy)	Stack (m)	MERP (tpy)
VOC	500	10	5,424

Based on the tables shown above, the MERP value for the Boone County hypothetical source was the lowest; therefore, it has the highest sensitivity to ozone impacts from VOM⁹ contribution, so it has been selected as the appropriate source location for this analysis. The EPA MERPs ViewQlik website provides a variety of model combinations with different stack heights and emission rates for each location. The stack heights relevant to this project are 45.72 m, so a stack height of 10 m was chosen as a conservative estimate¹⁰.

3.5 Assessment Approach and Results

Consistent with the USEPA's guidance, the following equation is used to calculate the MERP for VOM.

Equation 3-1. MERP Calculation

```
MERP = Critical Air Quality Threshold \times \left(\frac{Modeled Emission Rate from Hypothetical Source}{Modeled Air Quality Impact from Hypothetical Source}\right)
```

Based on USEPA's July 29, 2022, Guidance for Ozone and Fine Particulate Matter Permit Modeling, the significant impact limit (SIL) is 1 ppb for 8-hr Ozone. To calculate the secondary impact of VOM on Ozone, the maximum hourly VOM emission rate derived in Section 3.2 ("as carbon" basis) was annualized, assuming 8,760 hours of operation per kiln per year. This represents a worst-case annual emissions rate for both kilns, which assumes that both kilns operate at the start-up emission rate for every hour of an entire year. That annualized emission rate is calculated as follows:

⁹ Note that USEPA uses the term volatile organic compounds, or VOC, rather than VOM. For purposes of this demonstration, VOM and VOC are interchangeable.

¹⁰ Throughout this TSD, "conservative" is used as a term to indicate that a variable(s) was defined so that it ultimately contributes to a higher modeled concentration for the respective pollutant. Actual typical results are expected to be lower.

Equation 3-2. Annualized VOM Emissions Rate for MERPs

$$ER_{tpy} = \frac{VOM \ \frac{lb}{hr} * 8,760 \ \frac{hours}{year} * 2 \ Kilns}{2000 \ \frac{lb}{ton}}$$

Using the above equation, ER_{tpy} is equal to 126.76 tons per year.

This unrealistically high annualized emissions rate can be compared to the Boone VOM MERPs using the following equation to derive the expected secondary impacts from the additional VOM emissions:

Equation 3-3. Calculation of Secondary Formation Impacts

 $Ozone \ Secondary \ Impact_{ppb} = \ \frac{ER_{tpy}}{MERPs_{tpy}} * SIL_{ppb}$

The secondary contribution is therefore expected to be below the Ozone SIL of 1 ppb based on the values presented in Table 3-5.

MERP (tpy)	SIL (ppb)	ERtpy	Secondary Contribution (ppb)
2,985	1	126.76	0.043

As shown in Table 3-5, the potential contribution to ozone from VOM emissions from Rain Carbon's kilns during start-up is orders of magnitude less than what constitutes a significant contribution.

4. PARTICULATE MATTER

Rain Carbon's kilns are subject to the Process Weight Rate (PWR) rule established in 35 III. Adm. Code 212.322. This rule sets limits on PM based on equations that are dependent upon the process rate of an effected unit. When Rain Carbon's pyroscrubbers are not operating at a temperature greater than or equal to 1,800°F (during SMB events), the chances of achieving compliance with the limitation calculated in accordance with the PWR rule decrease. In the R23-18A rulemaking, Rain Carbon has proposed an allowance of 300 hours per year per kiln to operate during periods when the pyroscrubber inlet temperature is below 1,800°F and a SMB event is occurring. The analysis in this Section demonstrates that approving the proposed alternative standard for PM will not result in a significant impact to the environment.

4.1 Engineering Study

During the start-up conducted on July 20, 2023, AirSource collected stack gas samples and utilized USEPA Method 5 (40 CFR 60, Appendix A-3) to capture filterable PM. AirSource collected five samples, each over a 48-minute period¹¹. From the sampling, AirSource was able to determine mass emission rates of PM during five periods of the single kiln start-up. Table 4-1 presents the results from the testing performed on July 20, 2023.

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Average
Start/Stop Time	9:44-10:49	12:11-13:10	13:44-14:37	16:15-17:17	17:47-18:50	-
Sampling Time (min)	48	48	48	48	48	-
Pyroscrubber Inlet	694	1,069	1,125	1,281	1,373	1 004
Temperature ^a (°F)	094	1,009	1,120	1,201	1,373	1,086
Filterable PM ^b (lbs/hr)	44.7	32.2	33.1	44.1	51.7	41.2

 Table 4-1. Particulate Matter Sampling Results

a. Pyroscrubber temperature for individual runs is the average over the duration of the respective run. The average pyroscrubber inlet temperature is calculated as the average of all temperature recordings between the start of Run 1 and the end of Run 5.

b. Rain Carbon's Clean Air Act Program Permit (CAAPP) operating permit 95120092, Condition 4.2.2.b.ii.C.I. specifies that Rain Carbon shall conduct a Method 5 test for PM emissions. This is the testing requirement associated with the PWR PM limit in the permit. Consistent with the CAAPP, this analysis considers only the results from EPA Method 5.

At the maximum process weight rate for Kiln 1 (28 T/hr), the maximum allowable PM emission rate determined in accordance with 35 III. Adm. Code 212.322 is:

Equation 4-1. Process Weight Rate Maximum Allowable PM Emission Rate

 $E = C + A(P)^{B} = 0 + 4.10(28)^{0.67} = 38.2 \, lb/hr$

Three (3) of the sample results presented in Table 4-1 were above 38.2 lbs/hr. The average pyroscrubber inlet temperature during each run was below 1,800°F.

¹¹ The start/stop time on each run indicates a runtime longer than 48 minutes. Sampling occurred for 48 minutes, but the total run time is longer due to the time it takes to move the sampling train to different stack ports to meet the traverse requirements defined in USEPA Method 1.

4.2 Correlation and Interpolated Emission Rate

Plotting the PM emissions results against the corresponding pyroscrubber inlet temperature for each run suggests that a quadratic curve would be the best fitting correlation; however, this would suggest that as temperature increases beyond 1,800°F, the PM emission rate would increase rapidly. Since the pyroscrubber's primary function is to utilize a high temperature environment to destroy PM, this would not be an appropriate correlation to use for extrapolating/interpolating emission results. The dataset can be expanded to facilitate the fitting of a more realistic curve and extrapolation/interpolation can generate more reliable results. Since 1,800°F represents the minimum temperature (at the inlet to the pyroscrubber) for the pyroscrubber to achieve the designed control of PM emissions, the dataset can be expanded by adding a datapoint at 1,800°F and the maximum allowable PM emission rate calculated using Equation 4-1, 38.2 lbs/hr.

Utilizing the expanded dataset, the PM emission sampling results correlate well with pyroscrubber inlet temperature using a third order polynomial with a coefficient of determination (R²) in excess of 0.97. See Figure 4-1 below.

Figure 4-1. PM & Temperature Correlation

The curve shows a decrease in emissions as the pryroscrubber inlet temperature decreases from approximately 700°F to approximately 950°F, then PM emissions increase until reaching a maximum emission rate of approximately 57 lbs/hr at a temperature of approximately 1,550°F. The precise maximum emission rate can be calculated using the derivative of Equation 4-2 to generate a quadratic equation and then determining the temperature value at which the quadratic equation would equate to zero. The corresponding temperature of the derivative equating to zero is 1,547.0°F. Finally, this temperature value can be entered into Equation 4-2 to determine the corresponding emission rate as follows:

Equation 4-2. PM Correlation Equation

 $y = -2.539849x10^{-7}x^3 + 9.480190x10^{-4}x^2 - 1.109651x + 445.2877$

Where:

y=PM emission rate (lbs/hr) x=pyroscrubber inlet temperature (°F)

 $y = -2.539849x10^{-7} * (1547.0)^3 + 9.480190x10^{-4} * (1547.0)^2 - 1.109651 * 1547 + 445.2877$

 $y = 57.1 \, lbs/hr$

This interpolated maximum PM emission rate can be used as the basis for a conservatively high emission rate for air dispersion modeling.

Note: The interpolated maximum emission rate is based on emissions testing performed during a kiln startup. However, Rain Carbon's proposed rule for PM compliance allows for operation during start-up, malfunction, and breakdown. Given the unpredictable nature of malfunction and breakdown events, Rain Carbon cannot sample for emissions during a malfunction or breakdown, nor can it intentionally cause such an event to occur for purposes of a stack test. Emissions during start-up events are, in general, higher than emissions during malfunction and breakdown events for two reasons:

- 1. Start-up events occur for longer durations than malfunction and breakdown events, on average; and
- Start-up events can begin at 400°F pyroscrubber inlet temperature and will progress all the way to 1,800°F while malfunction and breakdown events most often begin at temperatures above 1,800°F and decrease until the malfunction or breakdown is resolved, which is often associated with only a portion of the temperature range from 1,800°F down to 400°F.

4.2.1 Emission Rates for Modeling

The emission sources identified in the previous section require emission rates in order for the model to simulate the dispersion. As explained in Section 4.2, the maximum interpolated PM emission rate from the kilns, during an SMB event, is 57.1 lbs/hr.

The stack test conducted on July 20, 2023, did not speciate the results based on particle size which is appropriate for comparing the allowable emission rate determined by the PWR, which regulates PM. However, the NAAQS standards are specific to PM₁₀ and PM_{2.5}, not PM. Accordingly, demonstrating non-interference with the NAAQS requires modeling PM₁₀ and PM_{2.5} emissions impacts specifically. EPA's AP-42 Compilation of Air Emissions Factors from Stationary Sources, Appendix B.2 contains published particle size distributions for general processes and materials and can be used when source-specific distribution information is not available. Table B.2-2 on page B.2-15 provides distribution information for *Category 5: Calcining and Other Heat Reaction Processes*. In this table, PM₁₀ was determined by EPA to comprise 53% of PM and PM_{2.5} was determined to comprise 18% of PM. Applying these factors to the maximum PM emission rate (57.1 lbs/hr):

 $PM_{10} = 57.1 * 53\% = 30.3 \ lbs/hr$ $PM_{2.5} = 57.1 * 18\% = 10.3 \ lbs/hr$

Another factor that the model must account for is how to accurately model the air dispersion impact of intermittent and unpredictable events like start-ups, malfunctions and breakdowns. While the modeled impacts of SMB events should reflect the worst-case conditions, the model should not reflect unrealistic emission scenarios. More specifically, the model must employ a methodology to appropriately account for the fact that a maximum PM emission rate of 57.1 lbs/hr cannot occur at every minute of every hour in a

given year. EPA has issued guidance providing a specific methodology to appropriately model "intermittent scenarios, such as startup/shutdown operations" in order to avoid "modeled impacts being significantly higher than actual impacts would realistically be expected to be for these emission scenarios."¹² More specifically, EPA offered an average hourly rate approach to model intermittent sources to account for worst-case conditions while appropriately accounting for the reduced probability that emissions will actually be generated from the intermittent source:

"...model impacts from intermittent emissions based on an average hourly rate, rather than the maximum hourly emission. For example, if a proposed permit includes a limit of 500 hours/year or less for an emergency generator, a modeling analysis could be based on assuming continuous operation at the average hourly rate, i.e., the maximum hourly rate times 500/8760. This approach would account for potential worst-case meteorological conditions associated with emergency generator emissions by assuming continuous operation, while use of the average hourly emission represents a simple approach to account for the probability of the emergency generator actually operating for a given hour."

In the case of Rain Carbon's SMB events, Rain Carbon is proposing to limit kiln operation during SMB events to 300 hours per year per kiln, or less. The occurrence of these events will be intermittent and largely unpredictable. Therefore, applying EPA's average hourly rate approach to the modeled emission rate and modeling this emission rate as if every hour of every year modeled could experience that emission episode is an appropriate modeling approach to assess the potential and realistic impacts of SMB events on the ambient air while considering probability in the model. This approach is valid because it accounts for the same mass basis for all potential operating hours (300 hours in this case), while avoiding biasing the results towards high results due to unfavorable meteorological conditions on any one day.

Applying the average hourly rate approach to the PM₁₀ and PM_{2.5} emissions rates produces the following:

$$PM_{10} = 30.3 \frac{lbs}{hr} \times \frac{300}{8760} = 1.04 \frac{lbs}{hr}$$

$$PM_{2.5} = 10.3 \frac{lbs}{hr} x \frac{300}{8760} = 0.35 \frac{lbs}{hr}$$

4.3 Air Dispersion Modeling

In order to assess whether operating in accordance with the proposed rule will have a significant impact on the ambient air, air dispersion models representing these operating scenarios have been developed and executed using the maximum emission rate calculated in the previous section of this report.

4.3.1 Dispersion Modeling Selection

The current USEPA regulatory model, AERMOD (version 23132) was used as incorporated within Trinity's $BREEZE^{TM}$ AERMOD Pro software to calculate ground-level concentrations with the regulatory default parameters. Appropriate averaging periods, based on federal and state ambient air quality standards, and model options were considered in the analysis, in conjunction with the following guidance documents:

¹² Memorandum: Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO2 National Ambient Air Quality Standard

https://www.epa.gov/sites/default/files/2015-07/documents/appwno2_2.pdf

- ▶ USEPA's *Guideline on Air Quality Models* 40 CFR 51, Appendix W (Revised, January 17, 2017)
- ▶ USEPA's AERMOD Implementation Guide (Revised June 2022);
- USEPA's Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program (April 17, 2018);
- ▶ USEPA's Guidance for Ozone and Fine Particulate Matter Permit Modeling (July 29, 2022);

4.3.2 Source Characterization

The kilns are the source of PM emissions; however, they route their exhaust gases to pyroscrubbers which reduce the amount of PM emissions before the exhaust gases are released to atmosphere via two individual stacks. Because the pyroscrubber exhaust stacks represent the point when emissions from the kilns are first released to the atmosphere, the stacks are placed into the air dispersion model as point sources where PM dispersion will begin.

The subsections below describe the development and execution of air dispersion models used to derive ambient air impact values that are compared to the SILs.

The recommended SIL values for the particulate matter standards are summarized below:

- PM_{2.5} 24-hr 1.2 μg/m³
- PM_{2.5} Annual¹³ 0.2 µg/m³
- PM₁₀ 24-hr 5 µg/m³

4.3.3 Building Downwash

The purpose of a building downwash analysis is to determine if the plume discharged from a stack will become caught in the turbulent wake of a building (or other structure), resulting in downwash of the plume. The downwash of the plume can result in elevated ground-level concentrations.

The Building Profile Input Program (BPIP) with Plume Rise Model Enhancements (PRIME) (version 04274) was used to determine the building downwash characteristics for each stack in 10-degree directional intervals. The PRIME version of BPIP features enhanced plume dispersion coefficients due to turbulent wake and reduced plume rise caused by a combination of the descending streamlines in the lee of the building and the increased entrainment in the wake. For PRIME downwash analyses, the building downwash data include the following parameters for the dominant building:

- Building height,
- Building width,
- Building length,
- X-dimension building adjustment, and
- > Y-dimension building adjustment.

Satellite imagery of the facility buildings, as digitized in AERMOD, are included in Figure 4-2 for reference.

https://www.federalregister.gov/d/2024-02637/p-1304

¹³ EPA expects to have an updated SIL for the revised primary annual PM_{2.5} NAAQS on or before the effective date of the final NAAQS.

Figure 4-2. General Model Overview

4.3.4 Coordinate System

In all modeling input and output files, the locations of emission sources, structures, and receptors were represented in the UTM coordinate system. The UTM grid divides the world into coordinates that are measured in north meters (measured from the equator) and east meters (measured from the central meridian of a particular zone, which is set at 500 km).

4.3.5 Receptor Grid

Trinity used a variable-density grid in order to determine the extent of the significant impact area (SIA).

- > Property line receptors with spacing of approximately 50 meters
- ▶ 100 meter spacing grid extending approximately 5,000 meters from the facility center
- ▶ 500 meter spacing, from 5,000 meters to approximately 11,500 meters from the facility center

The Facility is surrounded by fencing and has active security measures, such as guard houses, that restrict access to the facility along the property line. The fences and active security measures cause the property line to serve as a boundary between the facility and its ambient air.¹⁴ Consistent with sulfur dioxide (SO₂) Data Requirements Rule (DRR) modeling submitted and approved by USEPA, most recently in 2019, the Marathon Robinson Refinery, which is located directly adjacent to the Facility, was excluded from the receptor grid as it also has fences and active security measures prohibiting public access to its property. The ambient air boundary for the facility can be seen in Figure 4-2 and Figure 4-3, denoted in purple.

¹⁴ <u>https://www.epa.gov/sites/production/files/2019-12/documents/revised_policy_on_exclusions_from_ambient_air.pdf</u>

Figure 4-3. Receptor Grid and Boundaries

4.3.6 Terrain Elevations

The terrain elevation for each receptor point was determined using Elevated Terrain Mode and National Elevation Dataset (NED) data. The data has terrain elevations at approximately 10-meter intervals. In addition, the AERMOD terrain processor, AERMAP (version 18081), was used to compute the hill height scales for each receptor. AERMAP searches all NED data points for the terrain height and location that has the greatest influence on each receptor to determine the hill height scale for that receptor. AERMOD then uses the hill height scale in order to select the correct critical dividing streamline and concentration algorithm for each receptor. The elevations of the sources and buildings involved in the modeling demonstration were set using AERMAP.

Note that the modeling inputs described in the above subsections were established in a USEPA approved SO₂ DRR model and are being used for this modeling effort.

4.3.7 Meteorological Data

The meteorological data used for this modeling demonstration were obtained from the Evansville Regional Airport (KEVV), located in Evansville, IN. The data is pre-processed for AERMOD using AERMET (version 22112) and NOAA data for the years 2018 through 2022. This meteorological data was processed prior to the release of AERMET version 23132 and a complete meteorological dataset for 2023. The model change bulleting for AERMET version 23132 does not indicate substantial changes from version 22112, with most updates relating to minor bug fixes, and the only update to formulation was for the COARE1 subroutine which was not used in the preparation of the meteorological dataset for this analysis. The meteorological data, therefore, the met-data has not been updated for this analysis.

KEVV is located approximately 125 km to the south of the Facility. The Facility is located in rural Illinois, and KEVV is the meteorological station consistent with the USEPA approved SO₂ DRR model. One-minute wind data were processed using the AERMINUTE program and provided as inputs to AERMET. Finally, the regulatory default ADJ_U* option was selected in AERMET in the meteorological data used for this analysis.

As shown in Table 4-2, surface data from the KEVV are much greater than 90% complete (i.e., less than 10% missing) each year. The number of calm and missing hours from KEVV are shown for each year in Table 4-2.

Year	Number of Calm Hours	Number of Missing Hours	Missing Hours (%)
2018	81	149	1.70%
2019	166	32	0.37%
2020	69	9	0.10%
2021	106	20	0.23%
2022	998	173	1.97%

Table 4-2. Evansville Regional Airport Meteorological Data Valid Hours				
Table 4-2. Evalisville Regional Allout Intelevitudulai Dala vallu nuuis	Table 1.2 Evansville	Dogional Airpor	rt Motoorological Data	Valid Hours
	I ADIE 4-2. EVAIISVIIIE	Regional All pol	i meleuruugitai Dala	i vallu nouls

Based on the high data capture rate and previously being used for the USEPA approved SO₂ DRR model, KEVV data was used in this modeling demonstration. The data station is 122.5 meters above sea level, and that was input as the PROFBASE elevation in AERMOD. The upper air data used in the processing is from the Lincoln National Weather Service office in Lincoln, IL.

4.3.8 Representation of Emission Sources

AERMOD allows for emission units to be represented as point, area, volume, or open pit sources, among other less commonly used source types. A source with a stack is most appropriately modeled as a point source. For point sources with unobstructed vertical releases, it is appropriate to use actual stack parameters (i.e., height, diameter, exhaust gas temperature, and gas exit velocity) in the modeling analyses. The modeled sources at the Facility include point sources with upward unrestricted releases, which were modeled with the POINT source type. The point source modeled release parameters for the pyroscrubber stacks are presented in Table 4-3 below.

Model ID	UTM East	UTM North	Elevation (m)	Stack Height (m)	Stack Temp (K)	Exit Velocity (m/s)	Stack Diameter (m)
K1	437,642.7	4,315,969.5	165.7	45.72	530.93	9.29	3.05
K2	437,639.4	4,315,893.1	166.6	45.72	530.93	9.29	3.05

Table 4-3. Release	Parameters	for Modeled	Point Sources
	i al'alliotoro	101 1110 4010 4	

4.3.9 Results

The results of the modeling described in the previous subsections of this report are as follows:

Pollutant	Averaging Period	First High (µg/m³)	Highest 8 th High (µg/m³)	Highest 6 th High (µg/m³)	NAAQS (µg/m ³)	SIL (µg/m³)
PM10	24-Hour	0.12631		0.09030	150	5
PM _{2.5}	24-Hour	0.03335	0.0223		35	1.2
PM _{2.5}	Annual ¹⁵	0.00335			12	0.2

Table 4-4. Air Dispersion Modeling Results

The modeled results are being compared to the respective NAAQS to highlight the insignificance of the potential impact to the ambient air. In fact, the Significance Impact Levels (SILs) have been established for this very reason. SILs are typically used in Prevention of Significant Deterioration (PSD) modeling to assess whether a project alone has a significant enough modeled impact to warrant further and more comprehensive modeling. Projects which can demonstrate air dispersion impacts that are less than the respective SIL are deemed to be insignificant. Similarly, Rain Carbon has conducted air dispersion modeling of the "project" (kilns only, based on SMB emission rates) and is comparing the results to the respective SILs.

Note that Rain Carbon's initial modeling accounted for baseline emissions when determining the modeled impact of the proposed rulemaking. This is another aspect of PSD modeling that applies to this modeling exercise. In PSD SIL modeling, modified emission units in a project are modeled as the increase in emissions that are related to the project. In this case, the pre-project baseline emissions would be best represented as normal operating emissions and there would be different stack characteristics, meaning that the project's post-project emission rate could be modeled as a positive rate, and the pre-project baseline as

¹⁵ EPA recently promulgated a new PM_{2.5} primary annual NAAQS of 9 μ g/m³. 89 FR 16202. EPA has not yet developed a revised SIL based on the new 9 μ g/m³ standard. The new standard is not effective until May 5, 2024; therefore, this supplemental TSD compares modeling results for PM_{2.5} against the currently applicable NAAQS, 12 μ g/m³. However, because the modeling results for PM_{2.5} primary annual NAAQS are so far below the current 0.2 μ g/m³ SIL, the modeling will continue to demonstrate compliance with the forthcoming SIL for the new PM_{2.5} primary annual NAAQS of 9 μ g/m.³

a negative emission rate, to determine potential impacts to the ambient air quality standards. Note that Illinois EPA supported the use of this modeling approach, as stated in the March 7, 2023, comments to the Illinois Pollution Control Board (IPCB) for R23-18:

"What is generally considered in a 110(I) demonstration involving revisions of regulations is a comparison between the emissions that subject sources are allowed to emit under a current standard versus what they are allowed to emit under the revised standard."

Rain Carbon opted to run only the SMB emissions rate and ignore pre-project baseline emissions rates for this analysis, to add a conservative measure to the results.

4.3.9.1 PM₁₀ 24-Hour

The PM₁₀ 24-hour standard is 150 μ g/m³ for the highest 6th high modeled concentration. As presented in Table 4-4, the highest 6th high concentration modeled for Rain Carbon's SMB operation modeling scenario is 0.0903 μ g/m³. The modeled concentration is less than 0.1% of the NAAQS. The SIL for the PM₁₀ 24-hour standard is 5 μ g/m³ and the highest modeled concentration is 0.126 μ g/m³, or 2.5 % of the SIL. Figure 4-4 and Figure 4-5 below provide visual representations of the modeling results and comparison to the NAAQS and SIL.

Figure 4-4. PM₁₀ 24-Hour Modeling Results Compared to NAAQS

Figure 4-5. PM₁₀ 24-Hour Modeling Results Compared to SIL

4.3.9.2 PM_{2.5} 24-Hour

The PM_{2.5} 24-hour standard is 35 μ g/m³ for the highest 8th high modeled concentration. As presented in Table 4-4, the highest 8th high concentration modeled for Rain Carbon's SMB operation modeling scenario is 0.0223 μ g/m³. The modeled concentration is less than 0.1% of the NAAQS. The SIL for the PM_{2.5} 24-hour standard is 1.2 μ g/m³ and the highest modeled concentration is 0.03335 μ g/m³, or 2.8% of the SIL. Similar to the PM₁₀ 24-hour standard, Figure 4-6 and Figure 4-7 below depict the modeling results relative to their respective NAAQS and SIL values for PM_{2.5}.

Figure 4-6. PM_{2.5} 24-Hour Modeling Results Compared to NAAQS

Figure 4-7. PM_{2.5} 24-Hour Modeling Results Compared to SIL

4.3.9.3 PM_{2.5} Annual

The PM_{2.5} annual standard is 12 μ g/m³¹⁶ for the highest modeled concentration. The highest concentration modeled for Rain Carbon's SMB operation modeling scenario is 0.00335 μ g/m³. The modeled concentration is less than 0.1% of the NAAQS. The SIL for the PM_{2.5} annual standard is 0.2 μ g/m³ and the highest modeled concentration is 0.00335 μ g/m³, or 1.7% of the SIL. Refer to Figure 4-8 and Figure 4-9 below for visual representations of the modeling results relative to their respective NAAQS and SIL values for PM_{2.5}.

Figure 4-8. PM_{2.5} Annual Modeling Results Compared to NAAQS

¹⁶ See Footnote 15, above, for a discussion of the anticipated impact of the 9 μ g/m³ PM_{2.5} annual standard on the modeling results.

Figure 4-9. PM_{2.5} Annual Modeling Results Compared to SIL

APPENDIX A. AIRSOURCE STACK TESTING REPORT

SOURCE EMISSIONS TEST REPORT

Prepared for

Rain CII Carbon, LLC

Regarding testing of

Kiln 1

Located at the

Robinson Facility 12187 E 950th Ave Robinson, Illinois 62454

Performed on July 20th, 2023

by

AIRSOURCE TECHNOLOGIES, INC. 20505 W. 67th St. Shawnee, Kansas 66218 (913) 422-9001

Project No. 4173
PREFACE

This report was prepared by AirSource Technologies, Inc., and contains the results of engineering testing that was conducted on a kiln at the Rain CII Carbon, LLC facility in Robinson, Illinois on July 20th, 2023. To the best of our knowledge the data contained in this report are accurate and complete. Any questions concerning this report should be directed to Mr. Taylor Pittman, Project Manager, or Mr. Pete Liebl, Principal.

AirSource Technologies, Inc.

Approved by:

- Luth

Taylor Pittman

Project Manager

August 29, 2023

Pete Liebl

Principal

TABLE OF CONTENTS

SECTIO	N 1 -	INTRODUCTION	L
1.1	FACI	LITY OVERVIEW	1
1.2	SOU	RCES TESTED AND PURPOSE OF TESTING	1
1.3	SUMI	MARY OF TESTING PERFORMED AND TEST PROJECT PERSONNEL	1
SECTIO	N 2 -	SUMMARY OF RESULTS	2
2.1	KILN	1 EMISSION RESULTS	2
2.2	POTE	ENTIAL FACTORS AFFECTING TESTING	3
SECTIO	N 3 -	SAMPLING & ANALYTICAL PROCEDURES	1
3.1	DESC	CRIPTION OF SAMPLING LOCATIONS	1
3.2	SAM	PLING AND ANALYSIS PROCEDURES	1
3.2		Traverse Point Layout	1
	2.2	Velocity and Volumetric Flow Rate	1
3.2 3.2		Gas Molecular Weight	
3.2 3.2		Moisture Content	
3.2		VOC Determination	
3.3		CRIPTION OF SAMPLING EQUIPMENT	
3.3		Isokinetic Sampling Equipment	
3.3	3.2	Instrumental Analyzers and Sampling System	
3.4	ANAL	YTICAL PROCEDURES	
3.4		Analysis for Filterable/Condensable Particulate Matter	
3.4		Analysis for O ₂ and CO ₂	
3.4		Analysis for VOC	
3.5		ATIONS AND MODIFICATIONS TO ANALYTICAL METHODS	
3.6		RIPTION OF ANALYTICAL EQUIPMENT	
	5.1	Isokinetic Sample Analytical Equipment	3
	5.2	Instrumental Analyzers	
		QUALITY ASSURANCE/QUALITY CONTROL	
4.1			
4.2		TCULATE MEASUREMENTS AND SAMPLING	
4.3		YSIS FOR PARTICULATE MATTER AND MOISTURE	
4.4	ANAL	YSIS FOR O ₂ , CO ₂ , AND VOC)

TABLE OF APPENDICES

APPENDIX A CALCULATED EQUATIONS

APPENDIX B CALCULATED RESULTS

APPENDIX B-1 PARTICULATE RESULTS

APPENDIX B-2 INSTRUMENTAL ANALYZER RESULTS

APPENDIX C FIELD DATA

APPENDIX C-1 PARTICULATE DATA

- APPENDIX C-2 ANALYZER DATA LOG
- APPENDIX C-3 VE FIELD DATA

APPENDIX D LABORATORY ANALYSIS

APPENDIX D-1 PARTICULATE GRAVIMETRIC ANALYSIS

APPENDIX E EQUIPMENT CALIBRATIONS

- APPENDIX E-1 PRE-TEST
- APPENDIX E-2 POST-TEST

APPENDIX F PROCESS DATA

SECTION 1 - INTRODUCTION

1.1 FACILITY OVERVIEW

The Rain CII Carbon, LLC (Rain) facility in Robinson produces calcined petroleum coke for the production of aluminum and titanium dioxide.

The facility is owned and operated by Rain Carbon, Inc., headquarters at 10 Signal Road, Stamford, Connecticut 06902, and is located at 12187 E 950th Avenue, Robinson, Illinois 62454.

1.2 SOURCES TESTED AND PURPOSE OF TESTING

The facility's Kiln 1 was the source tested. Engineering testing was conducted to evaluate emission rates that occur during a kiln start-up.

1.3 SUMMARY OF TESTING PERFORMED AND TEST PROJECT PERSONNEL

Testing of the Kiln 1 stack outlet included outlet stack measurements to determine filterable and condensable particulate matter, volatile organic compounds (VOC, as Total Gaseous Organic Compounds - TGOC), as well as visible emissions.

Concentrations of VOC were determined by instrumental analyzer. Volumetric flow rates determined in the course of performing particulate testing were applied to gaseous pollutant concentrations to obtain gaseous mass emission rates where applicable.

Five nominally 48-minute test runs for particulate matter and visible emissions were conducted, and nine 45-minute test runs for VOC emissions were conducted.

Isokinetic and gas sampling was conducted by AirSource Technologies, Inc. (AirSource), 20505 W. 67th St., Shawnee, Kansas, 66218. AirSource personnel who performed sampling were:

Mr. Taylor Pittman:	Instrument Operator
Mr. Kevin McKenna:	Isokinetic Sampling
Mr. Brian Greenall:	Sample Train Operator
Mr. David Hotz:	Sample Train Operator
Ms. Lex Hooper:	Certified Observer

AirSource personnel who recovered and analyzed particulate samples were Mr. Alex Vansickle and Ms. Lex Hooper, Laboratory Technicians.

Mr. Dan Fearday, Plant Manager, with Rain coordinated the test project scheduling and provided services and coordination on site necessary to conduct testing.

No regulatory agency representative was present during testing.

SECTION 2 - SUMMARY OF RESULTS

Test measurement results are presented in Tables 2-1 and 2-2 below. Complete results can be found in Appendix B, Calculated Results.

2.1 KILN 1 EMISSION RESULTS

The Kiln 1 emissions measurement results are presented in Tables 2-1 and 2-2 below. The VOC concentrations in Table 2-2 are expressed as an equivalent amount of propane.

Parameter	Units	Run 111	Run 112	Run 113	Run 114	Run 115	Average
Date	—	07/20/23	07/20/23	07/20/23	07/20/23	07/20/23	—
Run Time Period	—	09:44-10:49	12:11-13:10	13:44-14:37	16:15-17:17	17:47-18:50	—
Sampling Time	min	48.00	48.00	44.00	48.00	48.00	
Gas Stream							
Avg. Velocity Head (Δp)	in H ₂ O	0.156	0.172	0.157	0.167	0.175	0.165
Avg. Temperature	°F	496	702	760	847	931	747
Absolute Pressure	in Hg	29.28	29.27	29.25	29.19	29.20	29.23
Moisture Concentration	%V	5.87	21.22	21.82	18.76	19.62	17.46
O ₂ Concentration, Dry	%V	17.72	15.90	16.07	15.33	14.97	16.00
CO ₂ Concentration, Dry	%V	1.86	3.04	3.16	3.65	3.85	3.11
Avg. Velocity	ft/min	1,829	2,177	2,133	2,261	2,392	2,158
Flow Rate, Actual	acfm	148,456	176,756	173,133	183,552	194,172	175,214
Flow Rate, Wet	scfm	80,207	78,537	73,204	72,282	71,881	75,222
Flow Rate, Dry	dscfm	75,497	61,875	57,232	58,725	57,778	62,221
PM Concentration							
Filterable PM	gr/dscf	6.91E-02	6.08E-02	6.75E-02	8.77E-02	1.04E-01	7.79E-02
Condensable PM	gr/dscf	1.19E-02	3.04E-02	2.94E-02	4.46E-02	6.83E-02	3.69E-02
Total PM	gr/dscf	8.10E-02	9.11E-02	9.69E-02	1.32E-01	1.73E-01	1.15E-01
PM Emission Rate							
Filterable PM	lb/hr	4.47E+01	3.22E+01	3.31E+01	4.41E+01	5.17E+01	4.12E+01
Condensable PM	lb/hr	7.67E+00	1.61E+01	1.44E+01	2.24E+01	3.38E+01	1.89E+01
Total PM	lb/hr	5.24E+01	4.83E+01	4.75E+01	6.66E+01	8.56E+01	6.01E+01
Sample Volume	dscf	42.169	29.644	26.796	31.003	31.891	_
Avg. Isokinetic Variation	%	93.3	111.5	102.7	108.8	109.2	—

Table 2-1Kiln 1 Particulate Emission Results

Kim I daseous Poliutant Emission Results – Idoc (as propane)					
Parameter	Units	1-1-1	1-1-2	1-1-3	Average
Date		07/20/23	07/20/23	07/20/23	—
Instrument Log Time(s)	—	09:45-10:30	10:45-11:30	11:45-12:30	—
Gas Stream					
O ₂ Concentration, Dry	%V	17.72	16.66	16.34	16.90
CO ₂ Concentration, Dry	%V	1.86	2.62	2.98	2.49
Total Hydrocarbons					
Concentration - Wet	ppmv	4.37	0.89	0.83	2.03
Parameter	Units	1-1-4	1-1-5	1-1-6	Average
Date		07/20/23	07/20/23	07/20/23	—
Instrument Log Time(s)	_	12:47-13:32	13:45-14:30	14:45-15:30	
Gas Stream					
O ₂ Concentration, Dry	%V	15.90	16.07	15.93	15.97
CO ₂ Concentration, Dry	%V	3.04	3.16	3.31	3.17
Total Hydrocarbons					
Concentration - Wet	ppmv	0.71	0.69	0.63	0.68
Parameter	Units	1-1-7	1-1-8	1-1-9	Average
Date	_	07/20/23	07/20/23	07/20/23	—
Instrument Log Time(s)	_	15:45-16:30	16:46-17:31	17:45-18:30	
Gas Stream					
O ₂ Concentration, Dry	%V	15.69	15.33	14.97	15.33
CO ₂ Concentration, Dry	%V	3.47	3.65	3.85	3.66
Total Hydrocarbons					
Concentration - Wet	ppmv	0.66	0.58	0.56	0.60

Table 2-2Kiln 1 Gaseous Pollutant Emission Results – TGOC (as propane)

2.2 POTENTIAL FACTORS AFFECTING TESTING

During startup, changing conditions within the kiln stack as the process climbed toward full heat and load over the course of the day made attempts at selecting kiln condition parameters for testing difficult. Isokinetic performance was therefore negatively impacted. Run 112 was determined to be slightly over 110%. All other runs were within the $100\pm10\%$ isokinetic criteria. This is not expected to have any significant effect on results.

There were no other apparent factors that may have introduced errors in the test results.

SECTION 3 - SAMPLING & ANALYTICAL PROCEDURES

3.1 DESCRIPTION OF SAMPLING LOCATIONS

Outlet emission measurements were conducted in Kiln 1's vertical, circular, steel 122" diameter exhaust stack. Access to the measurement location sampling ports was from a facility landing surrounding the stack and accessible by ladder. Four test ports consisting of steel pipe flanges 90° apart were used for particulate and gaseous concentration sampling.

Test location details such as duct diameter at the test port location, the nearest flow disturbances upstream and downstream of the test ports (with equivalent diameters), and the number of traverse points used for the particulate and associated volumetric flow rate sampling are located in Appendix C, Field Data.

3.2 SAMPLING AND ANALYSIS PROCEDURES

3.2.1 TRAVERSE POINT LAYOUT

The traverse point layout was determined according to procedures in EPA Method 1 in Appendix A-1 of 40 *CFR*, Part 60 to provide a means for obtaining measurements representative of the gas stream. The cross-sectional area of the gas stream at the measurement location was divided into a number of equal areas. The number of equal areas was dependent upon the nearest upstream and downstream flow disturbances. The traverse points were located within each of these equal areas. Actual traverse point location measurement data used to locate the traverse points in the cross-sectional area for sampling when sampling was conducted, and measuring gas stream parameters are in Appendix B, Calculated Results.

3.2.2 VELOCITY AND VOLUMETRIC FLOW RATE

Gas stream velocities and volumetric flow rates were determined according to procedures in EPA Method 2 in Appendix A-1 of 40 *CFR*, Part 60. Type S pitot tube-probe assemblies meeting the dimensional specifications in EPA Method 2 for a baseline pitot tube coefficient and an inclined manometer were used for measuring velocity heads and static pressure. Velocity heads and gas density were used in calculating velocity. Gas density was determined from the molecular weight of the gas, gas stream temperature, and gas stream pressure. Calibrated thermocouples and a temperature meter were used for measuring gas stream temperatures. A digital barometer calibrated against a mercury barometer was used to measure atmospheric pressure at the test location. The atmospheric pressure and the gas stream static pressure were used in calculating gas stream pressure.

3.2.3 GAS MOLECULAR WEIGHT

Oxygen and carbon dioxide concentrations along with an assumed balance of nitrogen were used in the calculation of the dry molecular weight of each gas stream which along with the moisture content of the gas stream was used in all applicable gas stream parameter calculations such as for gas density and velocity.

The procedures in EPA Method 3A in Appendix A-2 of 40 *CFR*, Part 60 were used to continuously extract and analyze gas from the gas stream for oxygen and carbon dioxide as described in Sections 3.3.2, Instrumental Analyzers and Sampling System, and 3.4.2, Analysis for O_2 and CO_2 .

3.2.4 MOISTURE CONTENT

Moisture (water vapor) content of the gas stream was determined according to procedures in EPA Method 4 in Appendix A-3 of 40 *CFR*, Part 60 (incorporated as part of the Method 5 sampling procedures). Moisture collected in the back half of each sampling train was determined gravimetrically from the difference between the initial and final weights of all of the impingers. The theoretical moisture content of the gas stream at saturated conditions was determined

from the vapor pressure of water at gas stream temperature and the gas stream pressure. The lower of the two results (sampled moisture or saturation moisture) was used in gas stream parameter calculations such as for gas density and conversions of volumetric flow rate and pollutant concentration between wet and dry conditions.

3.2.5 FILTERABLE/CONDENSABLE PARTICULATE MATTER DETERMINATION

The collected particulate samples were recovered and analyzed at AirSource's laboratory. AirSource performed the gravimetric analysis of the EPA Method 5 sampling train nozzle, filterable particulate filter holder front-half acetone rinses, and the dry fraction (filtered particulate matter) samples according to procedures in EPA Method 5. All nozzles and filter holder front halves were brushed and rinsed with reagent grade acetone. Rinse samples were transferred to tared 50-mL beakers and evaporated to dryness at room temperature. Filters along with any loose material were recovered and returned to their original petri dishes.

Gravimetric analysis of the samples and rinses recovered from the EPA Method 202 sampling train for condensable particulate matter were conducted according to procedures in EPA Method 202 in Appendix M of 40 CFR, Part 51 (Dry Impinger Method). All of the components after the filterable particulate filter and up to the condensable particulate filter were rinsed with deionized ultra-filtered water which was added to the sample condensate. Another set of rinses with acetone and hexane was performed and the rinsates stored in a separate sample bottle. Hexane extractions were performed on the recovered aqueous samples to separate the organic and inorganic condensable particulate matter fractions. The hexane and aqueous samples were returned to their respective sample containers after extraction. The condensable particulate filter was extracted three times with water and the extract added to the inorganic sample. This was repeated with hexane and the extract added to the organic sample. The hexane extracts were transferred to tared 50-mL beakers and evaporated to dryness at room temperature. The aqueous samples were transferred to 600-mL beakers and evaporated on a hot plate to about 50-mLs. These aqueous samples were then transferred to tared 50-mL beakers and evaporated on a hotplate to 10-mL. The residual moisture that remained was evaporated at room temperature. This recovery procedure was then immediately repeated on one of the recovered test run sample trains to create a Field Train Recovery Blank (FTRB).

All filterable and condensable rinse sample beakers, and filterable filters in petri dishes were desiccated for 24 hours and weighed to a constant weight (i.e., <0.5 mg change or <1% of total weight less tare weight change, whichever was greater) at intervals of six hours or longer. Each front-half rinse sample volume was determined from the difference between the weights of the empty sample container and the same container with sample divided by the density of acetone for blank correction determination. The total organic and inorganic blank sample weight from the FTRB was subtracted from the total organic and inorganic test run sample up to a maximum allowed subtraction of 2.0 mg. A proof blank train analysis was conducted with the collected sample and field recovery blank trains. The analysis data are located in Appendix D-1, Particulate Gravimetric Analysis.

3.2.6 VOC DETERMINATION

The procedures in EPA Method 25A in Appendix A of 40 *CFR*, Part 60 were used to continuously extract gas stream sample for pollutant analysis and to determine measurement system performance.

Volumetric flow rates measured during the course of testing for particulate emissions were applied to gaseous concentrations determined by instrumental analyzers to report mass emission rates of pollutant emissions where applicable.

3.3 DESCRIPTION OF SAMPLING EQUIPMENT

3.3.1 ISOKINETIC SAMPLING EQUIPMENT

Apex Instruments Inc. or Environmental Supply Company nozzles, probe liners, filter holders, and impingers were used for sample collection. Nutech, Apex, or Environmental Supply sampling probes, filter heater boxes, and impinger boxes, housed all sample glassware. Nutech, Apex, or Environmental Supply sample umbilical adapters and umbilicals and Nutech Model 2010 Stack Samplers with Watlow or Fuji temperature readouts, and Ambient Weather Model WS-108 barometers were used for volume, temperature and pressure measurements.

3.3.2 INSTRUMENTAL ANALYZERS AND SAMPLING SYSTEM

The emission measurement systems consisted of a sample extraction, transport, conditioning, distribution system, analyzers, and a data acquisition system.

The procedures in EPA Methods 3A in Appendix A of 40 CFR, Part 60 were used to continuously extract gas stream sample for analysis and to determine measurement system performance. Sample gas was extracted through a heated 316 stainless steel sampling probe, a Universal Analyzers Model 270S heated, stainless steel out-of-stack filter assembly with a two-micron ceramic filter element for particulate matter removal, and a Technical Heaters 100 foot long heated Teflon® sample transfer line all operated at approximately 250 °F to prevent condensation. Sample gas was extracted with a heated filter assembly which fed sample directly to the instrument sample inlet port. Sample for diluent testing was routed from a tee at the FID inlet port and connected to a thermo-electrically cooled gas sample dryer. Sample flow through the system was approximately 6 liters per minute.

The conditioned dry sample was directed through unheated Teflon® tubing to a flow panel controlling pressure at an instrument manifold delivering sample gas to diluent instrumental analyzers. The flow panel also controlled direct delivery of calibration gas to the instrument manifold and system bias calibration gas delivery to the inlet of the stack probe/filter assembly. Delivery of calibration gas to the filter assembly was adjusted so that excess calibration gas flooded and back fed through the probe.

Calibration gas flow rate to the filter assembly was adjusted so that excess gas flowed in reverse direction through the probe thus preventing dilution of the calibration or zero gas flowing into the filter element, the sample transfer line and to the analyzer.

Calibration gases prepared according to the EPA traceability protocol for assay and certification of gaseous calibration standards were used to calibrate the measurement system.

The data acquisition system included a duTec I/O Plexer for analog-to-digital conversion of instrument voltage or current signals and a personal computer for data logging digitized data. The system software read analyzer signal outputs approximately twice every second and recorded averages every 60 seconds. Data logged during calibrations, quality control checks, and sample gas analysis was transferred into a Microsoft Excel workbook where results for measurement system performance, sample gas concentrations and emission rates were computed. The measurement system performance results are located in Appendix B-2, Instrumental Analyzer Results.

3.4 ANALYTICAL PROCEDURES

3.4.1 ANALYSIS FOR FILTERABLE/CONDENSABLE PARTICULATE MATTER

The collected particulate samples were recovered and analyzed at AirSource's laboratory. AirSource performed the gravimetric analysis of the EPA Method 5 sampling train nozzle, filterable particulate filter holder front-half acetone rinses, and the dry fraction (filtered particulate matter) samples according to procedures in EPA Method 5. All nozzles and filter holder front halves were brushed and rinsed with reagent grade acetone. Rinse samples were

transferred to tared 50-mL beakers and evaporated to dryness at room temperature. Filters along with any loose material were recovered and returned to their original petri dishes.

Gravimetric analysis of the samples and rinses recovered from the EPA Method 202 sampling train for condensable particulate matter were conducted according to procedures in EPA Method 202 in Appendix M of 40 CFR, Part 51 (Dry Impinger Method). All of the components after the filterable particulate filter and up to the condensable particulate filter were rinsed with deionized ultra-filtered water which was added to the sample condensate. Another set of rinses with acetone and hexane was performed and the rinsates stored in a separate sample bottle. Hexane extractions were performed on the recovered aqueous samples to separate the organic and inorganic condensable particulate matter fractions. The hexane and aqueous samples were returned to their respective sample containers after extraction. The condensable particulate filter was extracted three times with water and the extract added to the inorganic sample. This was repeated with hexane and the extract added to the organic sample. The hexane extracts were transferred to tared 50-mL beakers and evaporated to dryness at room temperature. The aqueous samples were transferred to 600-mL beakers and evaporated on a hot plate to about 50-mLs. These aqueous samples were then transferred to tared 50-mL beakers and evaporated on a hotplate to 10-mL. The residual moisture that remained was evaporated at room temperature. This recovery procedure was then immediately repeated on one of the recovered test run sample trains to create a Field Train Recovery Blank (FTRB).

All filterable and condensable rinse sample beakers, and filterable filters in petri dishes were desiccated for 24 hours and weighed to a constant weight (i.e., <0.5 mg change or <1% of total weight less tare weight change, whichever was greater) at intervals of six hours or longer. Each front-half rinse sample volume was determined from the difference between the weights of the empty sample container and the same container with sample divided by the density of acetone for blank correction determination. The total organic and inorganic blank sample weight from the FTRB was subtracted from the total organic and inorganic test run sample up to a maximum allowed subtraction of 2.0 mg. A proof blank train analysis was conducted with the collected sample and field recovery blank trains. The analysis data are in Appendix D-1, Particulate Gravimetric Analysis.

3.4.2 ANALYSIS FOR O₂ AND CO₂

The procedures in EPA Method 3A in Appendix A-2 of 40 *CFR*, Part 60 were used to continuously extract and analyze gas stream sample for oxygen and carbon dioxide concentrations. The calibration gases were EPA traceability protocol certified concentrations of O_2 and CO_2 in nitrogen.

The analysis results are in Appendix B-2, Instrumental Analyzer Results. Instrument data and copies of the calibration gas certificates are in Appendix C-2, Analyzer Data Lo.

3.4.3 ANALYSIS FOR VOC

The procedures in EPA Method 25A in Appendix A-7 of 40 *CFR*, Part 60 were used to continuously extract and analyze sample gas from the gas stream for VOC expressed as propane. The calibration gases contained EPA traceability protocol certified concentrations of propane in nitrogen.

The analysis results are in Appendix B-2, Instrumental Analyzer Results. Instrument data and copies of the calibration gas certificates are in Appendix C-2, Analyzer Data Lo.

3.5 DEVIATIONS AND MODIFICATIONS TO ANALYTICAL METHODS

There were no deviations or modifications to the published analytical methods.

3.6 DESCRIPTION OF ANALYTICAL EQUIPMENT

3.6.1 ISOKINETIC SAMPLE ANALYTICAL EQUIPMENT

Reagents used were Fisher DIUF water, Fisher Optima grade acetone, and Fisher hexanes. Filterable particulate filters were Whatman 934AH glass microfiber and condensable filters were Tisch PTFE membrane SF16015. Liquid sample was collected in Thermo Scientific I-Chem bottles. Impinger weights were measured with an Ohaus Galaxy Explorer E0D110 and Acculab VIC-1501 balances. Particulate sample weights were measured with a Mettler Toledo XPE 205 analytical balance.

3.6.2 INSTRUMENTAL ANALYZERS

The analyzer used in measuring oxygen and carbon dioxide concentrations according to EPA Method 3A was a California Analytical Model 602P multi-component gas analyzer measuring oxygen using paramagnetic detection and carbon dioxide by nondispersive infrared absorption spectroscopy.

The analyzer used to measure VOC concentration according to procedures in EPA Method 25A was a Thermo Fisher Scientific Model 51i-HT flame ionization detector (FID). The FID was maintained at 392 °F during testing.

SECTION 4 - QUALITY ASSURANCE/QUALITY CONTROL

The Quality Assurance/Quality Control (QA/QC) procedures and requirements specified in the EPA methods or any other methods used and AirSource standard operating procedures were used. Those procedures include test equipment calibrations and procedural elements of the methods. Examples of those procedural elements are test equipment leak checks, proper traversing and placement of sampling probes in gas streams, and verification of the integrity of measurement systems before and after sampling. The performance and results of all QA/QC procedures were recorded on appropriate forms, data sheets, or in computer workbooks as appropriate.

An assessment of the overall quality of the data generated for this test project was conducted. The data assessment included a review of the sample collection and analytical data, including calibrations. The data generated for this report are traceable and of known and acceptable quality.

4.1 COMPLETENESS

All measurements specified in the test plan were completed. All measurements specified in the test plan were completed and are reported. All samples specified in the test plan were collected and analyzed and the results are reported.

4.2 PARTICULATE MEASUREMENTS AND SAMPLING

The EPA Method 5 sample extraction for the test runs on Kiln 1 was within the $100\pm10\%$ isokinetic criteria required by the test method, except for Run 112 which was slightly above the 110% criteria. All of the final sampling train leak checks were within method criteria for test runs reported. All of the sampling temperatures were within specified ranges. All of the test equipment requiring calibration met the method criteria for calibrations before and after the testing.

4.3 ANALYSIS FOR PARTICULATE MATTER AND MOISTURE

All of the initial and final analytical balance-check weight values for the filter and beaker weighings were within 0.2 mg of each other. All of the initial and final field balance-check weight values for the impinger weighings were within 0.2 g of each other.

4.4 ANALYSIS FOR O₂, CO₂, AND VOC

The calibration error was less than the $\pm 2\%$ provided by the method. System bias was within the $\pm 5\%$ for the zero and high range calibration gases. Zero drift and calibration drift were less than $\pm 3\%$ of the span over the test run.

APPENDIX A

CALCULATED EQUATIONS

EPA Methods 5 and 202 – Filterable and Condensible **Particulate Matter Calculations**

Dry Gas Sample Volume

E_{Mtr}

$V_m = V_f - V_i$	$V_{m(std)} = -$	$\frac{W_m \times Y \times \left(P_{bar} \pm \frac{E_{Mtr}}{1,000 \text{ ft}} + \frac{\Delta H}{13.6}\right)}{T_m}$	
Dry gas meter ele	vation relative to the	e barometer ft	

-10101		
P _{bar}	Barometric pressure at the barometer	in Hg
T _m	Average absolute dry gas meter temperature	° R
V _f	Final dry gas meter volume reading	ft ³
Vi	Initial dry gas meter volume reading	ft ³
V _m	Net dry gas meter volume, actual	ft ³
V _{m (std)}	Net dry gas meter volume at standard conditions	dscf
Y	Dry gas meter calibration correction factor	dimensionless
ΔH	Average orifice meter pressure-drop	in H ₂ O
13.6	Specific gravity of mercury relative to water	in H₂O/in Hg
17.64	Standard absolute temperature (527.67 ° R) divided by	° R/in Hg
	standard absolute pressure (760 mm Hg/25.4 mm/in)	-

Gas Stream Moisture (Water Vapor) Content

$V_{w(std)}=0.$	$04715 \times M_{lc} \qquad B_{ws(Sample)} = \frac{V_{w(std)}}{V_{m(std)} + V_{w(std)}} \qquad B_{ws(Sat)}$	$= \frac{VP_{H2O}}{P_s}$
	$P_{w} = B_{ws} \times 100 \qquad \qquad B_{d} = 1 - B_{ws}$	
B _d	Proportion of the dry gas by volume	dimensionless
B _{ws}	B _{ws (Sample)} or B _{ws (Sat)} , whichever is less	dimensionless
B_{ws} (Sample)	Proportion of water vapor by volume determined with the sampling train	dimensionless
B _{ws (Sat)}	Proportion of water vapor by volume for a saturated or supersaturated gas stream	dimensionless
M _{Ic}	Total mass of water collected in the sampling train	g
Ps	Absolute gas stream pressure	in Hg
Pw	Percent moisture (water vapor) in the gas stream	%V
V _{m (std)}	Net dry gas meter volume at standard conditions	dscf

V _{w (std)}	Equivalent volume of water vapor collected, at	ft ³
	standard conditions	
VP _{H2O}	Vapor pressure of water at gas stream temperature	in Hg
0.04715	Conversion factor for grams of water to cubic feet	ft³/g
	of water vapor at standard conditions	-

ft³

Gas Stream Absolute Pressure

$$P_s = P_{bar} \pm \frac{E_{Stk}}{1,000 \text{ ft}} + \frac{P_g}{13.6}$$

E _{Stk}	Sampling location elevation relative to the barometer	ft
P_{bar}	Barometric pressure at the barometer	in Hg
Pg	Gas stream static pressure	in H ₂ O
Ps	Absolute gas stream pressure	in Hg
13.6	Specific gravity of mercury relative to water	in H ₂ O/in Hg

Gas Molecular Weight

For Combustion Sources

$$\% N_2 = 100\% - (\% CO_2 + \% O_2)$$

 $M_d = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times \% N_2$

$$M_s = M_d \times B_d + 18 \times B_{ws}$$

B _d	Proportion of the dry gas by volume	dimensionless
B _{ws}	Proportion of water vapor by volume	dimensionless
M _d	Molecular weight of the dry gas	lb/lb-mole
M_s	Molecular weight of the wet gas	lb/lb-mole
%CO2	Carbon dioxide concentration by volume, dry-basis	%V
%O ₂	Oxygen concentration by volume, dry-basis	%V
$%N_2$	Nitrogen concentration by volume, dry-basis	%V
0.28	Molecular weight of nitrogen divided by 100	lb/lb-mole/100%
0.32	Molecular weight of oxygen divided by 100	lb/lb-mole/100%
0.44	Molecular weight of carbon dioxide divided by 100	lb/lb-mole/100%
18	Molecular weight of water	lb/lb-mole

For Ambient Air Sources

M _d	Molecular weight of dry ambient air	28.965 lb/lb-mole
----------------	-------------------------------------	-------------------

Gas Stream Velocity

$\Delta p = \left($	$\left(\frac{\sum_{i=1}^{n}\sqrt{\Delta p_{i}}}{n}\right)^{2} \qquad \qquad v_{s} = 85.49 \times C_{p} \times \sqrt{\Delta p}$	$\times \sqrt{\frac{T_s}{P_s \times M_s}} \times \frac{60 \text{ sec}}{1 \text{ min}}$
Cp	Pitot tube coefficient	dimensionless
M _s	Molecular weight of the wet gas	lb/lb-mole
n	Number of traverse points sampled	
Ps	Absolute gas stream pressure	in Hg
Ts	Average absolute temperature of the gas stream	°R
Vs	Average gas stream velocity	fpm
Δр	Average velocity head of the gas stream	in H ₂ O
Δp_i	Velocity head at sampling point i	in H ₂ O
85.49	Pitot tube constant	$\frac{\text{ft}}{\text{sec}} \left[\frac{(\text{lb/lb-mole})(\text{in Hg})}{(^{\circ}\text{R})(\text{in H}_{2}\text{O})} \right]^{1/2}$

Gas Stream Volumetric Flow Rate

$$A_{s} = \frac{D_{l} \times D_{2} \times \pi}{4} \times \frac{1 \text{ ft}^{2}}{144 \text{ in}^{2}} Circular Duct \qquad A_{s} = W_{l} \times W_{2} \times \frac{1 \text{ ft}^{2}}{144 \text{ in}^{2}} Rectangular Duct$$

$$Q_{s[acfm]} = v_{s} \times A_{s} \qquad Q_{s[scfm]} = \frac{17.64 \times Q_{s[acfm]} \times P_{s}}{T_{s}} \qquad Q_{s[dscfm]} = Q_{s[scfm]} \times B_{d}$$
As Cross sectional area of the stack or duct ft²
Bd Proportion of the dry gas by volume dimensionless
D_{1} First internal diameter of the circular stack or duct in
D_{2} Second internal diameter of the circular stack or duct in
P_{s} Absolute gas stream pressure in Hg
Q_{s[acfm]} Gas stream flow rate at actual conditions dscfm
Q_{s [dscfm]} Gas stream flow rate at dry standard conditions dscfm
Q_{s [scfm]} Gas stream flow rate at standard conditions dscfm
Q_{s} [scfm] First internal side of the rectangular stack or duct in
P_{s} Average gas stream velocity fpm
W_{1} First internal side of the rectangular stack or duct in
W_{2} Second internal side of the rectangular stack or duct in
Q_{2} (radiuses per diameter) squared
17.64 Standard absolute temperature (527.67 °R) divided by oR/in Hg

Isokinetic Sampling Variation

	$I - ____100\% \times P_{std} \times T_s \times V_{m(std)}$	
	$T = \frac{1}{T_{std} \times v_s \times \theta \times P_s \times B_d \times \pi \times \frac{D_n^2}{4} \times \frac{1 \text{ ft}^2}{144 \text{ in}^2} \times \frac{60 \text{ sec}}{1 \text{ min}}}$	
B _d	Proportion of the dry gas by volume	dimensionless
D _n	Nozzle diameter	in
I	Percent of isokinetic sampling	%
Ps	Absolute gas stream pressure	in Hg
P_{std}	Standard absolute pressure	29.92 in Hg
ts	Average absolute temperature of the gas stream	°R
T_{std}	Standard absolute temperature	528 ° R
V _{m (std)}	Net dry gas meter volume at standard conditions	dscf
Vs	Average gas stream velocity	fpm
θ	Total sampling time	min
4	2 (radiuses per diameter) squared	

Filterable Particulate Matter Collected

Ţ	$V_{aw} = \frac{WF_{aw} - WI_{aw}}{\rho_{aw}} \qquad V_r = \frac{WF_r - WI_r}{\rho_{aw}} \qquad C_{aw} = \frac{M_{aw}}{V_{aw}}$	
	$M_{bkr} - WI_{bkr} - (C_{aw} \times V_r)$ $M_f = WF_f - WI_f$ $M_n = M_f$	$+M_r$
C_{aw}	Particulate matter concentration in the acetone (or water) reagent blank	mg/mL
Maw	Mass of the residue in the reagent blank	mg
M _f	Mass of the particulate matter on the filter	mg
Mn	Total mass of the filterable particulate matter collected	mg
Mr	Mass of the particulate matter in the front-half rinses	mg
Vaw	Volume of the acetone (or water) reagent blank	mL
Vr	Volume of the front-half acetone (or water) rinses	mL
WFaw	Weight of the container with the reagent blank sample	g
WF_{bkr}	Final beaker plus residue weight	mg
WF _f	Final filter plus particulate matter weight	mg
WFr	Weight of the container with the front-half rinses sample	g
WI _{aw}	Tare weight of the container for the reagent blank sample	g
WI _{bkr}	Initial (tare) beaker weight	mg
WI _f	Initial (tare) filter weight	mg
WIr	Tare weight of the container for the front-half rinses sample	g
ρ_{aw}	Density of the acetone (or water) reagent	g/mL

Condensible Particulate Matter Collected

$$V_{w} = \frac{WF_{w} - WI_{w}}{\rho_{w}} \qquad V_{ic} = \frac{WF_{i} - WI_{i}}{\rho_{w}} \qquad C_{w} = \frac{M_{w}}{V_{w}} \qquad V_{cond} = \frac{M_{lc} - M_{sg}}{M_{lc}} \times \frac{M_{lc} - M_{sg}}{\rho_{w}}$$

When ammonium hydroxide (NH₄OH) is not added to the inorganic fraction because the final pH of the impinger solution was greater than 4.5:

$$M_{i} = WF_{ibkr} - WI_{ibkr} - \left[C_{w} \times \left(V_{ic} - V_{cond}\right)\right]$$

When an aliquot is removed for analysis for sulfate by ion chromatography, NH₄OH is added to the inorganic fraction, and a correction is made only for the addition of NH₄OH:

$$M_{i} = (WF_{ibkr} - WI_{ibkr}) \times \frac{V_{ic}}{V_{ic} - V_{b}} - (0.35457 \times C_{SO4} \times V_{ic}) - [C_{w} \times (V_{ic} - V_{cond})]$$

When an aliquot is removed for analysis for sulfate by ion chromatography, NH_4OH is added to the inorganic fraction, and a correction is made for the addition of NH_4OH and the combined water removed by the acid-base reaction:

$$M_{i} = (WF_{ibkr} - WI_{ibkr}) \times \frac{V_{ic}}{V_{ic} - V_{b}} - (-0.02050 \times C_{SO4} \times V_{ic}) - [C_{w} \times (V_{ic} - V_{cond})]$$

When the re-dissolved inorganic fraction is titrated with NH₄OH titrant and a correction is made only for the addition of NH₄OH:

$$M_{i} = (WF_{ibkr} - WI_{ibkr}) - (0.35457 \times 48.0313 \times N \times V_{t}) - [C_{w} \times (V_{ic} - V_{cond})]$$

When the re-dissolved inorganic fraction is titrated with NH₄OH titrant and a correction is made for the addition of NH₄OH and the combined water removed by the acid-base reaction:

$$M_{i} = (WF_{ibkr} - WI_{ibkr}) - (-0.02050 \times 48.0313 \times N \times V_{i}) - [C_{w} \times (V_{ic} - V_{cond})]$$

$$V_{Mecl2} = \frac{WF_{Mecl2} - WI_{Mecl2}}{\rho_{Mecl2}} \qquad V_{o} = \frac{WF_{o} - WI_{o}}{\rho_{Mecl2}} \qquad C_{Mecl2} = \frac{M_{Mecl2}}{V_{Mecl2}}$$

$$M_{o} = WF_{obkr} - WI_{obkr} - (C_{Mecl2} \times V_{o}) \qquad M_{c} = M_{i} + M_{o}$$

C _{Mecl2}	Particulate matter concentration in the methylene chloride	mg/mL
	reagent blank	
C_{SO4}	Concentration of the sulfate ion (SO_4^{-2}) in the sample aliquot	mg/mL
Cw	Particulate matter concentration in the water reagent blank	mg/mL
M _c	Total mass of the condensible particulate matter collected	mg
Mi	Mass of the particulate matter in the inorganic fraction sample and rinses	mg
M _{Ic}	Total mass of the condensate collected in the impingers	g
M _{Mecl2}	Mass of the residue in the methylene chloride reagent blank	mg
Mo	Mass of the particulate matter in the organic fraction sample and rinses	mg

Continued on the following page \rightarrow

M_{sg}	Mass of moisture collected in the silica gel impinger	g
Mw	Mass of the residue in the water reagent blank	mg
Ν	Normality of the ammonium hydroxide titrant	meq/mL
Vb	Volume of aliquot taken for IC analysis for sulfate (SO ₄ -2)	mL
V _{cond}	Volume of the condensate collected in the impingers less an	mL
	estimated amount of condensate collected in the silica gel	
	impinger (The separate amounts of the condensate from the	
	gas stream and the water reagent collected in the silica gel	
	cannot be determined.)	
V _{ic}	Volume of the inorganic fraction sample (same as the final volume	mL
	recovered from the impingers plus the rinses)	
V _{Mecl2}	Volume of the methylene chloride reagent blank	mL
Vo	Volume of the organic fraction sample and rinses	mL
Vt	Volume of ammonium hydroxide titrant used for titration	mL
V _w	Volume of the water reagent blank	mL
WFi	Weight of the container with the inorganic fraction sample and rinses	g
WF _{ibkr}	Inorganic fraction sample and rinses final beaker plus residue	mg
IDKI	weight	ing
WF _{Mecl2}	Weight of the container with the methylene chloride reagent	g
	blank sample	5
WFo	Weight of the container with the organic fraction sample and	g
	rinses	0
WF_{obkr}	Organic fraction sample and rinses final beaker plus residue	mg
	weight	
WF _w	Weight of the container with the water reagent blank sample	g
WIi	Tare weight of the container for the inorganic fraction sample	g
14/1	and rinses	
WI _{ibkr}	Inorganic fraction sample and rinses initial (tare) beaker weight	mg
WI _{Mecl2}	Tare weight of the container for the methylene chloride reagent	g
\\/I	blank sample	a
WIo	Tare weight of the container for the organic fraction sample and rinses	g
WI _{obkr}	Organic fraction sample and rinses initial (tare) beaker weight	mg
WIw	Tare weight of the container for the water reagent blank sample	g
ρ_{Mecl2}	Density of the methylene chloride reagent	g/mL
ρ _w	Density of water	g/mL
48.0313	Equivalent weight of SO_4^{-2} (ionic weight of SO_4^{-2} divided by 2)	mg/meq
-0.02050	Factor for correcting for the amount of ammonia (NH ₃) retained	5 1
	in the sample and the amount of combined water removed	
	by the acid-base reaction (2 x the molecular weight of NH_3	
	divided by the molecular weight of SO_4^{-2} less 2 x the molecular	
	weight of H ₂ O divided by the molecular weight of SO_4^{-2})	
0.35457	Factor for correcting only for the amount of ammonia (NH_3)	
	retained in the sample (2 x the molecular weight of NH ₃	
	divided by the molecular weight of SO_4^{-2})	

Total Particulate Matter Concentration in the Stack or Duct			
	$C_{s(std)} = \frac{(M_n + M_c)}{V_{m(std)}} \times \frac{1 \text{ g}}{1,000 \text{ mg}} \times \frac{1 \text{ lb}}{453.59237 \text{ g}} \times \frac{7,000 \text{ gr}}{1 \text{ lb}}$		
	$C_{s(act)} = 17.64 \times C_{s(std)} \times \frac{P_s}{T_s} \times B_d$		
	$C_{s(7\%02)} = C_{s(std)} \times \frac{20.9 - 7}{20.9 - \% O_2} \qquad C_{s(12\%C02)} = C_{s(std)} \times \frac{12}{\% C_0}$	$\frac{2}{O_2}$	
B _d	Proportion of the dry gas by volume	dimensionless	
Cs (act)	Concentration of total particulate matter at actual conditions	gr/ft ³	
C _{s (std)}	Concentration of total particulate matter at dry standard conditions	gr/dscf	
C _{s (7%02)}	Concentration of total particulate matter at dry standard conditions, corrected to 7% oxygen	gr/dscf	
C _{s (12%C02)}	Concentration of total particulate matter at dry standard conditions, corrected to 12% carbon dioxide	gr/dscf	
M _c	Total mass of the condensible particulate matter collected	mg	
M _n	Total mass of the filterable particulate matter collected	mg	
Ps	Absolute gas stream pressure	in Hg	
Ts	Average absolute temperature of the gas stream	°R	
V _{m (std)}	Net dry gas meter volume at standard conditions	dscf	
%CO ₂	Carbon dioxide concentration by volume in the gas stream, dry-basis	%V	
%O ₂	Oxygen concentration by volume in the gas stream, dry-basis	%V	
7	Oxygen concentration standard	%V	
12	Carbon dioxide concentration standard	%V	
17.64	Standard absolute temperature (527.67 ° R) divided by standard absolute pressure (760 mm Hg/25.4 mm/in)	° R/in Hg	
20.9	Oxygen concentration in dry air	%V	

Filterable and condensible particulate matter concentrations are individually calculated in the same manner as above.

Total Dartiquiate Matter Co tratia in th C+-ماد D <u>_</u>

Total Particulate Matter Emission Rate

	$E_p = C_{s(std)} \times Q_{s[dscfm]} \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{1 \text{ lb}}{7,000 \text{ gr}}$	
	$E_{p \ [lb/MMBtu]} = C_{s(std)} \times \frac{1 \ \text{lb}}{7,000 \ \text{gr}} \times F_c \times \frac{100}{\% CO_2}$	
C_{s} (std)	Concentration of total particulate matter at dry standard conditions	gr/dscf
Ep	Total particulate matter emission rate	lb/hr
E _{p [Ib/MMBtu]}	Total particulate matter emission rate	lb/MMBtu
F _c	Ratio of the carbon dioxide volume generated by combustion to the high heating value of the fuel combusted	scf/MMBtu
Q _{s [dscfm]}	Gas stream flow rate at dry standard conditions	dscfm
%CO ₂	Carbon dioxide concentration by volume, dry-basis	%V

Filterable and condensible particulate matter emission rates are individually calculated in the same manner as above.

EPA Methods 3A, 6C, 7E, 10, and 25A – Gaseous Diluent (CO_2 and O_2), Gaseous Pollutant (SO_2 , NO_x , and CO), and Total Gaseous Organic Concentration (TGOC) Calculations

Calibration Adjusted CO₂, O₂, SO₂, NO_X, or CO Concentration in the Stack or Duct Effluent

$$C_{gas} = \left(\overline{C} - C_{\rho}\right) \times \frac{C_{ma}}{\left(C_{m} - C_{\rho}\right)}$$

Ē	Average gas analyzer output concentration, dry-basis	ppmv or %V
Cgas	Average calibration-adjusted effluent gas concentration, dry-basis	ppmv or %V
C _m	Average of the initial and final gas measurement system bias	ppmv or %V
	check responses to the upscale calibration gas	
C _{ma}	Certified analysis concentration in the upscale calibration gas	ppmv or %V
C ₀	Average of the initial and final gas measurement system bias	ppmv or %V
	check responses to the zero calibration gas	

$CO_2,\,O_2,\,SO_2,\,NO_X,\,or\,CO$ Analyzer Calibration Error

$$CE = \frac{\left(C_{mai} - C_a\right)}{S} \times 100\%$$

C_a	Analyzer response to the zero, mid-range, or high-range calibration gas	ppmv or %V
CE	Analyzer calibration error for the zero, mid-range, or high-range	%
C _{mai}	calibration gas Certified analysis concentration in the zero, mid-range, or	ppmv or %V
S	high-range calibration gas Effective span of the instrument (span gas concentration)	ppmv or %V

CO₂, O₂, SO₂, NO_X, or CO Measurement System Bias Check

$$CB = \frac{\left(C_s - C_a\right)}{S} \times 100\%$$

C _a CB	Analyzer response to the zero or upscale calibration gas Gas measurement system bias for the zero or upscale calibration	ppmv or %V %
	gas	
C_{s}	Gas measurement system response to the zero or upscale	ppmv or %V
	calibration gas	
S	Effective span of the instrument (span gas concentration)	ppmv or %V

CO₂, O₂, SO₂, NO_X, or CO Measurement System Zero & Calibration Drift

$$CD = \frac{\left(C_{sf} - C_{si}\right)}{S} \times 100\%$$

CD	Gas measurement system zero or calibration drift	%
C _{sf}	Final gas measurement system bias check response to the zero or upscale calibration gas	ppmv or %V
\boldsymbol{C}_{si}	Initial gas measurement system bias check response to the zero or upscale calibration gas	ppmv or %V
S	Effective span of the instrument (span gas concentration)	ppmv or %V

Calibration Adjusted TGOC (as Propane) in the Stack or Duct Effluent

$$C_{TGOC} = \left(\overline{C}_{HC} - C_{zero}\right) \times \frac{C_{mida}}{\left(C_{mid} - C_{zero}\right)}$$

\overline{C}_{HC}	Average TGOC analyzer output concentration as propane,	ppmv
	wet-basis	
C _{mid}	Average of the initial and final TGOC measurement system	ppmv
	responses to the mid-level propane calibration gas	
C_{mida}	Certified analysis concentration of propane in the mid-level	ppmv
	calibration gas	
C_{TGOC}	Average calibration-adjusted TGOC as propane, wet-basis	ppmv
Czero	Average of the initial and final TGOC measurement system	ppmv
	responses to the zero calibration gas as propane	

TGOC Measurement System Zero & Calibration Drift

$$CD_{TGOC} = \frac{\left(C_f - C_i\right)}{S_{TGOC}} \times 100\%$$

CD_{TGOC}	TGOC measurement system zero or calibration drift	%
C _f	Final TGOC measurement system response to the zero or mid-level	ppmv
	calibration gas as propane	
Ci	Initial TGOC measurement system response to the zero or mid-level	ppmv
	calibration gas as propane	
S _{TGOC}	Span is the upper limit of the gas concentration measurement range specified for the affected source category, usually 1.5 to 2.5 times the applicable emission limit; or, if not specified, 1.5 to 2.5 times the expected concentration	ppmv

TGOC Measurement System Calibration Error

$$CE_{TGOC} = \frac{\left(C_p - C_r\right)}{C_{cert}} \times 100\%$$

C_{cert}	Certified analysis concentration of propane in the low-level or	ppmv
	mid-level calibration gas	
CE_{TGOC}	TGOC measurement system calibration error	%
Cp	Predicted response to the low-level or mid-level calibration gas	ppmv
	as propane	
Cr	TGOC measurement system response to the low-level or mid-level	ppmv
	calibration gas as propane	

Dry Gas Sample Volume for Moisture (If Used)

	1	$7.64 \times V_m \times Y \times \left(P_{bar} \pm \frac{E_{Mtr}}{1,000 \text{ ft}} + \frac{\Delta H}{13.6} \right)$
$V_m = V_f - V_i$	$V_{m(std)} = -$	$\frac{1}{T_m}$

E _{Mtr}	Dry gas meter elevation relative to the barometer	ft
P_{bar}	Barometric pressure at the barometer	in Hg
T _m	Average absolute dry gas meter temperature	°R
V_{f}	Final dry gas meter volume reading	ft ³
Vi	Initial dry gas meter volume reading	ft ³
V _m	Net dry gas meter volume, actual	ft ³
V _{m (std)}	Net dry gas meter volume at standard conditions	dscf
Y	Dry gas meter calibration correction factor	dimensionless
ΔH	Average orifice meter pressure-drop	in H ₂ O
13.6	Specific gravity of mercury relative to water	in H ₂ O/in Hg
17.64	Standard absolute temperature (527.67 ° R) divided by	° R/in Hg
	standard absolute pressure (760 mm Hg/25.4 mm/in)	

Sampled Gas Stream Moisture (Water Vapor) Content (If Used)

$V_{w(std)} = 0.$	04715× M_{lc} $B_{ws(Sample)} = \frac{V_{w(std)}}{V_{m(std)} + V_{w(std)}}$ $B_{ws(Sat)}$	$P_{P} = \frac{VP_{H2O}}{P_s}$
	$P_{w} = B_{ws} \times 100 \qquad \qquad B_{d} = 1 - B_{ws}$	
B _d	Proportion of the dry gas by volume	dimensionless
B _{ws}	B _{ws (Sample)} or B _{ws (Sat)} , whichever is less	dimensionless
B _{ws} (Sample)	Proportion of water vapor by volume determined with the sampling train	dimensionless
B _{ws (Sat)}	Proportion of water vapor by volume for a saturated or supersaturated gas stream	dimensionless
M _{Ic}	Total mass of water collected in the sampling train	g
Ps	Absolute gas stream pressure	in Hg
Pw	Percent moisture (water vapor) in the gas stream	%V
V _{m (std)}	Net dry gas meter volume at standard conditions	dscf
V _{w (std)}	Equivalent volume of water vapor collected, at standard conditions	ft ³
VP_{H2O}	Vapor pressure of water at gas stream temperature	in Hg
0.04715	Conversion factor for grams of water to cubic feet of water vapor at standard conditions	ft³/g

Gas Stream Moisture (Water Vapor) Content from Psychrometer Data (If Used)

$$e_a = VP_{Tw} - \frac{(P_a - VP_{Tw}) \times (T_d - T_w)}{2800 - 1.3 \times T_w} \qquad B_{ws} = \frac{e_a}{P_s}$$

$$P_w = B_{ws} \times 100 \qquad \qquad B_d = 1 - B_{ws}$$

B _d	Proportion of the dry gas by volume	dimensionless
B _{ws}	Proportion of water vapor by volume	dimensionless
ea	Vapor pressure of water in the gas stream at the wet and dry bulb measurement location	in Hg
P_{a}	Absolute gas pressure at the wet and dry bulb location	in Hg
	$(P_a = P_s \text{ if measurements are in-situ})$	
Ps	Absolute gas stream pressure	in Hg
Pw	Percent moisture (water vapor) in the gas stream	%V
T _d	Dry bulb temperature in the gas stream	°F
Tw	Wet bulb temperature in the gas stream	°F
VP_Tw	Vapor pressure of water at the wet bulb temperature	in Hg

Gas Stream Absolute Pressure

$$P_{s} = P_{bar} \pm \frac{E_{Stk}}{1,000 \text{ ft}} + \frac{P_{g}}{13.6}$$

E _{Stk}	Sampling location elevation relative to the barometer	ft
P_{bar}	Barometric pressure at the barometer	in Hg
Pg	Gas stream static pressure	in H ₂ O
Ps	Absolute gas stream pressure	in Hg
13.6	Specific gravity of mercury relative to water	in H ₂ O/in Hg

Gas Molecular Weight

For Combustion Sources

$$\% N_2 = 100\% - (\% CO_2 + \% O_2)$$

 $M_d = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times \% N_2$

$$M_s = M_d \times B_d + 18 \times B_{ws}$$

B _d	Proportion of the dry gas by volume	dimensionless
B _{ws}	Proportion of water vapor by volume	dimensionless
M _d	Molecular weight of the dry gas	lb/lb-mole
Ms	Molecular weight of the wet gas	lb/lb-mole
%CO2	Carbon dioxide concentration by volume, dry-basis	%V
%O ₂	Oxygen concentration by volume, dry-basis	%V
$\%N_2$	Nitrogen concentration by volume, dry-basis	%V
0.28	Molecular weight of nitrogen divided by 100	lb/lb-mole/100%
0.32	Molecular weight of oxygen divided by 100	lb/lb-mole/100%
0.44	Molecular weight of carbon dioxide divided by 100	lb/lb-mole/100%
18	Molecular weight of water	lb/lb-mole

For Ambient Air Sources

M _d	Molecular weight of dry ambient air	28.965 lb/lb-mole
----------------	-------------------------------------	-------------------

Gas Stream Velocity

$\Delta p = \left($	$\left(\frac{\sum_{i=1}^{n}\sqrt{\Delta p_{i}}}{n}\right)^{2} \qquad \qquad v_{s} = 85.49 \times C_{p} \times \sqrt{\Delta p}$	$\times \sqrt{\frac{T_s}{P_s \times M_s}} \times \frac{60 \text{ sec}}{1 \text{ min}}$
Cp	Pitot tube coefficient	dimensionless
M _s	Molecular weight of the wet gas	lb/lb-mole
n	Number of traverse points sampled	
Ps	Absolute gas stream pressure	in Hg
Ts	Average absolute temperature of the gas stream	° R
Vs	Average gas stream velocity	fpm
Δр	Average velocity head of the gas stream	in H ₂ O
Δp_i	Velocity head at sampling point i	in H ₂ O
85.49	Pitot tube constant	$\frac{\text{ft}}{\text{sec}} \left[\frac{(\text{lb/lb-mole})(\text{in Hg})}{(^{\circ}\text{R})(\text{in H}_{2}\text{O})} \right]^{1/2}$

Gas Stream Volumetric Flow Rate

$$A_{s} = \frac{D_{l} \times D_{2} \times \pi}{4} \times \frac{1 \text{ ft}^{2}}{144 \text{ in}^{2}} Circular Duct \qquad A_{s} = W_{l} \times W_{2} \times \frac{1 \text{ ft}^{2}}{144 \text{ in}^{2}} Rectangular Duct$$

$$Q_{s[acfm]} = v_{s} \times A_{s} \qquad Q_{s[scfm]} = \frac{17.64 \times Q_{s[acfm]} \times P_{s}}{T_{s}} \qquad Q_{s[dscfm]} = Q_{s[scfm]} \times B_{d}$$
As Cross sectional area of the stack or duct ft²
Bd Proportion of the dry gas by volume dimensionless
D_{1} First internal diameter of the circular stack or duct in
D_{2} Second internal diameter of the circular stack or duct in
P_{s} Absolute gas stream pressure in Hg
Q_{s[acfm]} Gas stream flow rate at actual conditions dscfm
Q_{s [dscfm]} Gas stream flow rate at dry standard conditions dscfm
Q_{s [scfm]} Gas stream flow rate at standard conditions dscfm
Q_{s} [scfm] First internal side of the rectangular stack or duct in
W_{2} Second internal side of the rectangular stack or duct in
Q_{2} (radiuses per diameter) squared
17.64 Standard absolute pressure (760 mm Hg/25.4 mm/in)

Corrected Gaseous Pollutant (SO₂, NO_x, or CO) Concentration and Corrected TGOC

$C_{gas(7\%02)} = C_{gas} \times \frac{20.9 - 7}{20.9 - \%O_2}$	$C_{gas(12\%CO2)} = C_{gas} \times \frac{12}{\% CO_2}$
$C_{TGOC(7\%O2)} = \frac{C_{TGOC}}{B_d} \times \frac{20.9 - 7}{20.9 - \%O_2}$	$C_{TGOC(12\%CO2)} = \frac{C_{TGOC}}{B_d} \times \frac{12}{\% CO_2}$
Proportion of the dry gas by volume	dimonsion

B _d	Proportion of the dry gas by volume	dimensionless
C _{gas}	Average calibration-adjusted effluent gas concentration, dry-basis	ppmv
C _{gas} (7%02)	Concentration of the gaseous pollutant on a dry basis, corrected to 7% oxygen	ppmv
C _{gas} (12%C02)	Concentration of the gaseous pollutant on a dry basis, corrected to 12% carbon dioxide	ppmv
C _{TGOC}	Average calibration-adjusted TGOC as propane, wet-basis	ppmv
C _{TGOC} (7%02)	TGOC as propane on a dry basis, corrected to 7% oxygen	ppmv
C _{TGOC} (12%C02)	TGOC as propane on a dry basis, corrected to 12% carbon dioxide	ppmv
%CO ₂	Carbon dioxide concentration by volume in the gas stream, dry-basis	%V
%O ₂	Oxygen concentration by volume in the gas stream, dry-basis	%V
7	Oxygen concentration standard	%V
12	Carbon dioxide concentration standard	%V
20.9	Oxygen concentration in dry air	%V

Gaseous Pollutant (SO₂, NO_X, or CO) Emission Rate

$E_a = \frac{C_{gas}}{1 \mathrm{m}^3}$	$\frac{\text{mL}}{\text{mL}} \times \frac{M_{w} \text{g}}{\text{g} - \text{mol}} \times \frac{\text{g} - \text{mol}}{24.05515 \text{ L}} \times \frac{11\text{b}}{453.59237 \text{ g}} \times \frac{11\text{L}}{10^{3} \text{ mL}} \times Q_{s[dscfm]} \times \frac{10^{3} \text{ mL}}{10^{3} \text{ mL}} \times Q_{s[dscfm]} \times \frac{10^{3} \text{ mL}}{10^{3} \text{ mL}} \times Q_{s[dscfm]} \times \frac{10^{3} \text{ mL}}{10^{3} \text{ mL}} \times \frac{10^{3} \text{ mL}}{10^{3}$	$\times \frac{0.3048^3 \text{ m}^3}{1 \text{ ft}^3} \times \frac{60 \text{ min}}{1 \text{ hr}}$
C _{gas}	Average calibration-adjusted effluent gas concentration, dry-basis	ppmv (mL/m ³)
Ea	Emission rate of the gaseous pollutant	lb/hr
Mw	Molecular weight of the gaseous pollutant	g/g-mole
	Sulfur dioxide = 64.0638	
	Oxides of nitrogen as nitrogen dioxide = 46.0055	
	Carbon monoxide = 28.0101	
Q _{s [dscfm]}	Gas stream flow rate at dry standard conditions	dscfm

Total Gaseous Organic Emission Rate (as Propane)				
$E_p = \frac{C_{TGOO}}{1\mathrm{n}}$	$\frac{1}{10^3} \times \frac{M_w g}{g - mol} \times \frac{g - mol}{24.05515 L} \times \frac{11b}{453.59237 g} \times \frac{1L}{10^3 mL} \times Q_{s[scfm]}$	$_{0.3048^{3}} = \frac{0.3048^{3}}{1 \text{ft}^{3}} \times \frac{60 \text{min}}{1 \text{hr}}$		
C _{TGOC} E _p M _w Q _s [scfm]	Average calibration-adjusted TGOC as propane, wet-basis Total gaseous organic emission rate as propane Molecular weight of propane (44.09562) Gas stream flow rate at standard conditions	ppmv (mL/m ³) lb/hr g/g-mole scfm		

APPENDIX B

CALCULATED RESULTS

Appendix B-1 Particulate Results

Run Report - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	111

Stack or Duct Dimensions

Circular Crcular Crcular		
Diameter # 1	in.	122.000
Diameter # 2	in.	122.000
Cross-Section Area	ft ²	81.180

Gas Stream Conditions

Avg. Gas Temperature	°F	496
Avg. Velocity Head (Δp)	in. H ₂ O	0.156
Static Gas Pressure	in. H ₂ O	0.00
Absolute Gas Pressure	in. Hg	29.28
O ₂ Concentration, Dry	%V	17.72
CO ₂ Concentration, Dry	%V	1.86
Moisture	%V	5.87
Dry Molecular Weight	lb/lb-mole	29.01
Wet Molecular Weight	lb/lb-mole	28.36

Dry Gas Meter Conditions Console Elevation ft 0 DGM Correction (Y) 1.015 Average ΔH in. H_2O 2.89 Avg. DGM Temperature °F 84.4 Initial DGM Volume 669.700 ft³ Final DGM Volume ft³ 713.000 ft³ Leak Check Volume -0.000 Leak Correction Volume ft³ Net DGM Volume ft³ 43.300 Dry Gas Sample Volume 42.169 dscf

Other Related Data

Barometer Reading	in. Hg	29.40
Test Location Elevation	ft	125
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	in. H ₂ O	0.396

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	in.	0.431
Avg. Isokinetic Variation	%	93.3
IKV 90-110% Criterion		Pass

Volumetric Flow Rate Results

Average Gas Velocity	ft/min	1,829
Volumetric Flow, Actual	acfm	148,456
Corrected Flow, Wet	scfm	80,207
Corrected Flow, Dry	dscfm	75,497

Particulate Matter Emission Results		Filterable	Condensable	Total
Total Particulate Matter Collected	mg	188.9	32.4	221.3
Concentration (Wet)	mg/acf	2.28	0.391	2.67
Concentration (Wet)	gr/acf	0.0352	6.03E-03	0.0412
Concentration (Dry)	mg/dscf	4.48	0.768	5.25
Concentration (Dry)	gr/dscf	0.0691	0.0119	0.0810
Emission Rate	lb/hr	44.7	7.67	52.4

Metric Equivalents - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	111

Stack or Duct Dimensions

●Circular ○ Rectangular		
Diameter # 1	m	3.0988
Diameter # 2	m	3.0988
Cross-Section Area	m²	7.5418

Gas Stream Conditions

Avg. Gas Temperature	°C	258
Avg. Velocity Head (Δp)	mm H_2O	4.0
Static Gas Pressure	mm H_2O	0.0
Absolute Gas Pressure	mm Hg	743.6
O ₂ Concentration, Dry	%V	17.72
CO ₂ Concentration, Dry	%V	1.86
Moisture	%V	5.87
Dry Molecular Weight	g/g-mole	29.01
Wet Molecular Weight	g/g-mole	28.36

Dry Gas Meter Conditions

Console Elevation	m	0.0
DGM Correction (Y)	—	1.015
Average ∆H	mm H_2O	73.4
Avg. DGM Temperature	° C	29.1
Initial DGM Volume	m ³	18.96379
Final DGM Volume	m ³	20.18991
Leak Check Volume	m ³	-0.00000
Leak Correction Volume	m ³	
Net DGM Volume	m ³	1.22612
Dry Gas Sample Volume	dscm	1.19411

Other Related Data

Barometer Reading	mm Hg	746.8
Test Location Elevation	m	38.1
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	mm H ₂ O	1.99

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	mm	10.95
Avg. Isokinetic Variation	%	93.3
IKV 90-110% Criterion	_	Pass

Volumetric Flow Rate Results

Average Gas Velocity	m/min	557.4
Volumetric Flow, Actual	acm/min	4,203.8
Corrected Flow, Wet	scm/min	2,271.21
Corrected Flow, Dry	dscm/min	2,137.83

Particulate Matter Emission Results		Filterable	Condensable	Total
Total Particulate Matter Collected	mg	188.9	32.4	221.3
Concentration (Wet)	mg/acm	80.4	13.8	94.2
Concentration (Dry)	mg/dscm	158	27.1	185
Emission Rate	kg/hr	20.3	3.48	23.8

Electronic Filing: Received, Clerk's Office 03/15/2024 Traverse Data - Particul

Traverse Data - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	111

Traverse Point	Gas Temp., °F	Δp in. H ₂ O	ΔH in. H ₂ O	DGM Inlet, °F	DGM Outlet, °F
A1	412	0.100	2.00	78	78
2	423	0.150	3.00	80	80
3	437	0.170	3.30	82	82
B1	444	0.100	1.90	83	83
2	481	0.140	2.60	84	84
3	507	0.180	3.20	85	85
C1	501	0.130	2.40	86	86
2	531	0.180	3.20	86	86
3	540	0.200	3.50	87	87
D1	530	0.120	2.10	86	86
2	569	0.210	3.60	88	88
3	575	0.230	3.90	88	88
Average	496	0.156	2.89	84.4	84.4

Leak Check Volumes

Initial			
Final			
Difference			

Filterable Particulate Matter and Moisture Analysis

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	111

Impinger Weights

Condenser &		Initial	Final	Difference
Knockout	g	643.9	672.5	28.6
CPM Impinger	g	465.3	465.3	0.0
H ₂ O Impinger	g	693.0	695.2	2.2
H ₂ O Impinger	g			
Silica Gel	g	714.2	739.2	25.0
	Total Collected		g	55.8

Moisture Results

Moisture Volume	scf	2.631
Dry Gas Sample Volume	dscf	42.169
Sampled Moisture	%V	5.87
Saturation Moisture	%V	N/A
Reported Moisture	%V	5.87

Rinse Reagent

Acetone
 Water

Sampling Train Front-half Rinses

Container Gross Wt.	g	294.6
Container Empty Wt.	g	165.5
Sample Volume	mLs	163.4
Evap. Beaker No.	C22-8-36	
Beaker Tare Weight	g	30.0453
Beaker Final Weight	g	30.0937
Blank Correction	mg	-0.1
Net Weight	mg	48.3

Dry Catch and Filter Weights

Filter No.	F23-7-1	
Filter Tare Weight	g	37.3182
Filter Final Weight	g	37.4588
Filter Blank	g	NA
Net Weight	mg	140.6

Acetone Field Reagent Blank

Container Gross Wt.	g	300.5	
Container Empty Wt.	g	166.9	
Reagent Blank Volume	mLs	169.1	
Evap. Beaker No.	C22-8-29		
Beaker Tare Weight	g	28.8716	
Beaker Final Weight	g	28.8717	
Residue Weight	mg	0.1	
Blank Concentration	mg/mL	0.0006	

Filter Blank

g	
g	
	g

Total Filterable Particulate Matter

Total Weight mg 188.9

Condensable Particulate Matter Analysis

Project	Ra	in	Location	ŀ	(-1 Stack	
Project Number	41	73	Method	EPA Met	thods 5 a	nd 202
Test Date	July 20	, 2023	Run No.		111	
Hexane Field Reagen	t Blank		Water Fiel	d Reagent E	Blank	
Container Gross Wt.	g	344.6	Container G	ross Wt.	g	261.0
Container Empty Wt.	g	165.8	Container E	mpty Wt.	g	164.4
Reagent Blank Volume	mLs	269.7	Water Blank	Volume	mLs	96.8
Evap. Beaker No.	C2	2-8-30	Evap. Beake	er No.	C2	22-8-31
Beaker Tare Weight	g	29.9420	Beaker Tare	Weight	g	30.5884

Field Train Recovery (FTR) Blank

Organic Fraction Container Gross Wt.

Total FTR Blank CPM

Organic Fraction

Residue Weight

Beaker Final Weight

		Inorganic Fra
a	557.0	Container Gros

29.9428

0.8

g

mg

Container Empty Wt.	g	297.0	
Sample Wt.	g	260.0	
Evap. Beaker No.	C22-8-35		
Beaker Tare Weight	g	29.9567	
Beaker Final Weight	g	29.9575	
Net Weight	mg	0.8	
Mass of NH ₄ ⁺ Added	To Sam	ble	
NH ₄ OH Normality	meq/mL	0.0000	
Titrant Volume Used	mLs	0.0	
NH ₄ ⁺ added to Sample	mg	0.0	

Total Condensable Particulate Matter

mg

<u>ctio</u>n

Beaker Final Weight

Residue Weight

Container Gross Wt.	g	763.5	
Container Empty Wt.	g	504.1	
Sample Wt.	g	259.4	
Evap. Beaker No.	C2	22-8-34	
Beaker Tare Weight	g	29.5305	
Beaker Final Weight	g	29.5332	
Less NH4 ⁺ in Sample	mg	0.0	
Net Weight	mg	2.7	
Filter Weights			
Filter No.	NA		

30.5885

0.1

q

mg

Filter No.		NA
Filter Tare Weight	g	0.0
Filter Final Weight	g	0.0
Net Weight	mg	0.0

CPM Sampling Train

3.5

Inorganic Fraction

organie rraccion			
Container Gross Wt.	g	926.0	
Container Empty Wt.	g	503.9	
Sample Wt.	g	422.1	
Evap. Beaker No.	C22	2-10-21	
Beaker Tare Weight	g	1.5955	
Beaker Final Weight	g	1.6258	
Net Weight	mg	30.3	
Mass of NH ₄ ⁺ Added	To Samp	ole	
NH ₄ OH Normality	meq/mL	0.0000	
Titrant Volume Used	mLs	0.0	
NH_4^+ added to Sample	mg	0.0	
Total Condensable Particulate Matter			
Total CPM Weight	mg	34.4	
Blank Correction Used	mg	-2.0	
Corrected CPM Weight	mg	32.4	

Inorganic Fraction			
Container Gross Wt.	g	571.4	
Container Empty Wt.	g	294.8	
Sample Wt.	g	276.6	
Evap. Beaker No.	C2	22-8-37	
Beaker Tare Weight	g	28.6473	
Beaker Final Weight	g	28.6514	
Less NH4 ⁺ in Sample	mg	0.0	
Net Weight	mg	4.1	
Filter Weights			

Filter No.		NA
Filter Tare Weight	g	0.0
Filter Final Weight	g	0.0
Net Weight	mg	0.0

FTR Blank CPM was >2.0 mg.

Run Report - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	112

Stack or Duct Dimensions

Circular Crectangular		
Diameter # 1	in.	122.000
Diameter # 2	in.	122.000
Cross-Section Area	ft ²	81.180

Gas Stream Conditions

Avg. Gas Temperature	°F	702
Avg. Velocity Head (Δp)	in. H ₂ O	0.172
Static Gas Pressure	in. H ₂ O	0.00
Absolute Gas Pressure	in. Hg	29.27
O ₂ Concentration, Dry	%V	15.90
CO ₂ Concentration, Dry	%V	3.04
Moisture	%V	21.22
Dry Molecular Weight	lb/lb-mole	29.12
Wet Molecular Weight	lb/lb-mole	26.76

Dry Gas Meter Conditions			
Console Elevation	ft	0	
DGM Correction (Y)	_	1.015	
Average ∆H	in. H ₂ O	1.39	
Avg. DGM Temperature	٩F	89.5	
Initial DGM Volume	ft ³	728.302	
Final DGM Volume	ft ³	759.150	
Leak Check Volume	ft ³	-0.000	
Leak Correction Volume	ft ³		
Net DGM Volume	ft ³	30.848	
Dry Gas Sample Volume	dscf	29.644	

Other Related Data

Barometer Reading	in. Hg	29.39
Test Location Elevation	ft	125
Pitot Tube Coefficient	_	0.840
Average SQRT(Δp)	in. H ₂ O	0.415

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	in.	0.365
Avg. Isokinetic Variation	%	111.5
IKV 90-110% Criterion		Fail

Average Gas Velocity	ft/min	2,177
Volumetric Flow, Actual	acfm	176,756
Corrected Flow, Wet	scfm	78,537
Corrected Flow, Dry	dscfm	61,875

Particulate Matter Emission Res	Filterable	Condensable	Total	
Total Particulate Matter Collected	mg	116.7	58.3	175.0
Concentration (Wet)	mg/acf	1.38	0.688	2.07
Concentration (Wet)	gr/acf	0.0213	0.0106	0.0319
Concentration (Dry)	mg/dscf	3.94	1.97	5.90
Concentration (Dry)	gr/dscf	0.0608	0.0304	0.0911
Emission Rate	lb/hr	32.2	16.1	48.3

Metric Equivalents - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	112

Stack or Duct Dimensions

●Circular ○ Rectangular		
Diameter # 1	m	3.0988
Diameter # 2	m	3.0988
Cross-Section Area	m²	7.5418

Gas Stream Conditions

Avg. Gas Temperature	°C	372
Avg. Velocity Head (Δp)	mm H_2O	4.4
Static Gas Pressure	mm H_2O	0.0
Absolute Gas Pressure	mm Hg	743.3
O ₂ Concentration, Dry	%V	15.90
CO ₂ Concentration, Dry	%V	3.04
Moisture	%V	21.22
Dry Molecular Weight	g/g-mole	29.12
Wet Molecular Weight	g/g-mole	26.76

Dry Gas Meter Conditions

Console Elevation	m	0.0
DGM Correction (Y)	—	1.015
Average ∆H	mm H_2O	35.3
Avg. DGM Temperature	° C	31.9
Initial DGM Volume	m ³	20.62322
Final DGM Volume	m ³	21.49673
Leak Check Volume	m ³	-0.00000
Leak Correction Volume	m ³	
Net DGM Volume	m ³	0.87352
Dry Gas Sample Volume	dscm	0.83942

Other Related Data

Barometer Reading	mm Hg	746.5
Test Location Elevation	m	38.1
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	mm H ₂ O	2.09

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	mm	9.27
Avg. Isokinetic Variation	%	111.5
IKV 90-110% Criterion	_	Fail

Average Gas Velocity	m/min	663.7
Volumetric Flow, Actual	acm/min	5,005.2
Corrected Flow, Wet	scm/min	2,223.93
Corrected Flow, Dry	dscm/min	1,752.12

Particulate Matter Emission Results		Filterable	Condensable	Total
Total Particulate Matter Collected	mg	116.7	58.3	175.0
Concentration (Wet)	mg/acm	48.7	24.3	73.0
Concentration (Dry)	mg/dscm	139	69.5	208
Emission Rate	kg/hr	14.6	7.30	21.9

Electronic Filing: Received, Clerk's Office 03/15/2024 Traverse Data - Particul

Traverse Data - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	112

Traverse	Gas	Δр		DGM	DGM
Point	Temp., °F	in. H ₂ O	in. H ₂ O	Inlet, °F	Outlet, °F
A1	676	0.140	1.10	86	86
2	688	0.220	1.80	88	88
3	695	0.240	1.90	89	89
B1	648	0.120	1.00	87	87
2	692	0.180	1.40	89	89
3	702	0.200	1.60	91	91
C1	672	0.130	1.00	89	89
2	703	0.160	1.30	91	91
3	707	0.170	1.40	91	91
D1	789	0.130	1.00	91	91
2	724	0.200	1.60	91	91
3	726	0.200	1.60	91	91
Average	702	0.172	1.39	89.5	89.5

Leak Check Volumes

Initial			
Final			
Difference			

Filterable Particulate Matter and Moisture Analysis

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	112

Impinger Weights

Condenser &		Initial	Final	Difference
Knockout	g	783.0	933.6	150.6
CPM Impinger	g	549.7	549.8	0.1
H ₂ O Impinger	g	559.9	549.0	-10.9
H ₂ O Impinger	g			
Silica Gel	g	714.9	744.4	29.5
	Total Collected		g	169.3

Moisture Results

Moisture Volume	scf	7.982
Dry Gas Sample Volume	dscf	29.644
Sampled Moisture	%V	21.22
Saturation Moisture	%V	N/A
Reported Moisture	%V	21.22

Rinse Reagent

● Acetone ○ Water

Sampling Train Front-half Rinses

Container Gross Wt.	g	303.1
Container Empty Wt.	g	167.1
Sample Volume	mLs	172.2
Evap. Beaker No.	C22-8-38	
Beaker Tare Weight	g	29.0256
Beaker Final Weight	g	29.0715
Blank Correction	mg	-0.1
Net Weight	mg	45.8

Dry Catch and Filter Weights

Filter No.	F22-9-9	
Filter Tare Weight	g	30.3950
Filter Final Weight	g	30.4659
Filter Blank	g	NA
Net Weight	mg	70.9

Acetone Field Reagent Blank

Container Gross Wt.	g	300.5
Container Empty Wt.	g	166.9
Reagent Blank Volume	mLs	169.1
Evap. Beaker No.	C2	2-8-29
Beaker Tare Weight	g	28.8716
Beaker Final Weight	g	28.8717
Residue Weight	mg	0.1
Blank Concentration	mg/mL	0.0006

Filter Blank

● Not Used ○ Used		
Filter No.		
Filter Tare Weight	g	
Filter Final Weight	g	

Total Filterable Particulate Matter

Total Weight mg 1

116.7

Electronic Filing: Received, Clerk's Office 03/15/2024 Condensable Particulate Matter Analysis

Project	Ra	in	Location	K-1 Stack	
Project Number	4173		Method EPA M	lethods 5 a	ind 202
Test Date	July 20	2023	Run No.	112	
	suly 20	, 2020			
Hexane Field Reage	nt Blank		Water Field Reagent	Blank	
Container Gross Wt.	g	344.6	Container Gross Wt.	g	261.0
Container Empty Wt.	g	165.8	Container Empty Wt.	g	164.4
Reagent Blank Volume	e mLs	269.7	Water Blank Volume	mLs	96.8
Evap. Beaker No.	C2	2-8-30	Evap. Beaker No.	C2	2-8-31
Beaker Tare Weight	g	29.9420	Beaker Tare Weight	g	30.5884
Beaker Final Weight	g	29.9428	Beaker Final Weight	g	30.5885
Residue Weight	mg	0.8	Residue Weight	mg	0.1
	Field	d Train Rec	overy (FTR) Blank		
Organic Fraction			Inorganic Fraction		
Container Gross Wt.	g	557.0	Container Gross Wt.	g	763.5
Container Empty Wt.	g	297.0	Container Empty Wt.	g	504.1
Sample Wt.	g	260.0	Sample Wt.	g	259.4
Evap. Beaker No.	C2	2-8-35	Evap. Beaker No.	C2	2-8-34
Beaker Tare Weight	g	29.9567	Beaker Tare Weight	g	29.5305
Beaker Final Weight	g	29.9575	Beaker Final Weight	g	29.5332
Net Weight	mg	0.8	Less NH4 ⁺ in Sample	mg	0.0
Mass of NH ₄ ⁺ Addeo	l To Sam	ole	Net Weight	mg	2.7
NH₄OH Normality	meq/mL	0.0000	Filter Weights		
Titrant Volume Used	mLs	0.0	Filter No.		NA
NH ₄ ⁺ added to Sample	e mg	0.0	Filter Tare Weight	g	0.0
Total Condensable P	articulate	e Matter	Filter Final Weight	g	0.0
Total FTR Blank CPM	mg	3.5	Net Weight	mg	0.0
		CPM San	npling Train		
Organic Fraction			Inorganic Fraction		
Container Gross Wt.	g	932.6	Container Gross Wt.	g	579.4
Container Empty Wt.	g	505.7	Container Empty Wt.	g	298.2
Sample Wt.	g	426.9	Sample Wt.	g	281.2
Evap. Beaker No.	C22	2-10-22	Evap. Beaker No. C22-8-39		2-8-39
Beaker Tare Weight	g	1.5904	Beaker Tare Weight	g	30.8864
Beaker Final Weight	g	1.6476	Beaker Final Weight	g	30.8895
Net Weight	mg	57.2	Less NH_4^+ in Sample	mg	0.0
Mass of NH ₄ ⁺ Addeo	l To Sam	ole	Net Weight	mg	3.1
NH₄OH Normality	meq/mL	0.0000	Filter Weights		
Titrant Volume Used	mLs	0.0	Filter No.		NA
NH4 ⁺ added to Sample	e mg	0.0	Filter Tare Weight	g	0.0
Total Condensable P	articulate	e Matter	Filter Final Weight	g	0.0
Total CPM Weight	mg	60.3	Net Weight	mg	0.0
Blank Correction Used	mg	-2.0			
Corrected CPM Weight	t mg	58.3	FTR Blank CPM was >2.	0 mg.	

Run Report - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	113

Stack or Duct Dimensions

Circular Circular	○ Rectangular	
Diameter # 1	in.	122.000
Diameter # 2	in.	122.000
Cross-Section Area	ft ²	81.180

Gas Stream Conditions

Avg. Gas Temperature	°F	760
Avg. Velocity Head (Δp)	in. H ₂ O	0.157
Static Gas Pressure	in. H ₂ O	0.00
Absolute Gas Pressure	in. Hg	29.25
O ₂ Concentration, Dry	%V	16.07
CO ₂ Concentration, Dry	%V	3.16
Moisture	%V	21.82
Dry Molecular Weight	lb/lb-mole	29.15
Wet Molecular Weight	lb/lb-mole	26.72

Dry Gas Meter Condition	ons	
Console Elevation	ft	0
DGM Correction (Y)	_	1.015
Average ∆H	in. H ₂ O	1.35
Avg. DGM Temperature	٩F	89.2
Initial DGM Volume	ft ³	759.510
Final DGM Volume	ft ³	787.400
Leak Check Volume	ft ³	-0.000
Leak Correction Volume	ft ³	
Net DGM Volume	ft ³	27.890
Dry Gas Sample Volume	dscf	26.796

Other Related Data

Barometer Reading	in. Hg	29.37
Test Location Elevation	ft	125
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	in. H ₂ O	0.396

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	in.	0.376
Avg. Isokinetic Variation	%	102.7
IKV 90-110% Criterion		Pass

Average Gas Velocity	ft/min	2,133
Volumetric Flow, Actual	acfm	173,133
Corrected Flow, Wet	scfm	73,204
Corrected Flow, Dry	dscfm	57,232

Particulate Matter Emission Res	ults	Filterable	Condensable	Total
Total Particulate Matter Collected	mg	117.2	51.1	168.3
Concentration (Wet)	mg/acf	1.45	0.630	2.08
Concentration (Wet)	gr/acf	0.0223	9.73E-03	0.0320
Concentration (Dry)	mg/dscf	4.37	1.91	6.28
Concentration (Dry)	gr/dscf	0.0675	0.0294	0.0969
Emission Rate	lb/hr	33.1	14.4	47.5

Metric Equivalents - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	113

Stack or Duct Dimensions

Circular Crectange		
Diameter # 1	m	3.0988
Diameter # 2	m	3.0988
Cross-Section Area	m²	7.5418

Gas Stream Conditions

Avg. Gas Temperature	°C	404
Avg. Velocity Head (Δp)	mm H_2O	4.0
Static Gas Pressure	mm H_2O	0.0
Absolute Gas Pressure	mm Hg	742.8
O ₂ Concentration, Dry	%V	16.07
CO ₂ Concentration, Dry	%V	3.16
Moisture	%V	21.82
Dry Molecular Weight	g/g-mole	29.15
Wet Molecular Weight	g/g-mole	26.72

Dry Gas Meter Conditions

Console Elevation	m	0.0
DGM Correction (Y)		1.015
Average ∆H	mm H_2O	34.4
Avg. DGM Temperature	° C	31.8
Initial DGM Volume	m ³	21.50693
Final DGM Volume	m ³	22.29669
Leak Check Volume	m ³	-0.00000
Leak Correction Volume	m ³	
Net DGM Volume	m ³	0.78976
Dry Gas Sample Volume	dscm	0.75878

Other Related Data

Barometer Reading	mm Hg	746.0
Test Location Elevation	m	38.1
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	mm H ₂ O	2.00

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	mm	9.55
Avg. Isokinetic Variation	%	102.7
IKV 90-110% Criterion	_	Pass

Average Gas Velocity	m/min	650.1
Volumetric Flow, Actual	acm/min	4,902.6
Corrected Flow, Wet	scm/min	2,072.92
Corrected Flow, Dry	dscm/min	1,620.64

Particulate Matter Emission Res	ults	Filterable	Condensable	Total
Total Particulate Matter Collected	mg	117.2	51.1	168.3
Concentration (Wet)	mg/acm	51.1	22.3	73.3
Concentration (Dry)	mg/dscm	154	67.3	222
Emission Rate	kg/hr	15.0	6.55	21.6

Electronic Filing: Received, Clerk's Office 03/15/2024 Traverse Data - Particul

Traverse Data - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	113

Traverse	Gas	Δр	ΔH	DGM	DGM
Point	Temp., °F	in. H ₂ O	in. H ₂ O	Inlet, °F	Outlet, °F
A1	740	0.120	1.00	87	87
2	756	0.200	1.70	88	88
3	761	0.220	1.90	88	88
B1	746	0.130	1.10	89	89
2	761	0.150	1.30	89	89
3	764	0.170	1.40	90	90
C1	753	0.080	0.70	90	90
2	756	0.140	1.20	90	90
3	778	0.160	1.30	90	90
D1	758	0.150	1.30	89	89
2	788	0.240	2.00	91	91
3					
Average	760	0.157	1.35	89.2	89.2

Leak Check Volumes

Initial			
Final			
Difference			

Filterable Particulate Matter and Moisture Analysis

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	113

Impinger Weights

Condenser &		Initial	Final	Difference
Knockout	g	647.9	778.5	130.6
CPM Impinger	g	511.8	512.0	0.2
H ₂ O Impinger	g	637.1	643.2	6.1
H ₂ O Impinger	g			
Silica Gel	g	834.5	856.2	21.7
	Total Collected		g	158.6

Moisture Results

Moisture Volume	scf	7.478
Dry Gas Sample Volume	dscf	26.796
Sampled Moisture	%V	21.82
Saturation Moisture	%V	N/A
Reported Moisture	%V	21.82

Rinse Reagent

● Acetone ○ Water

Sampling Train Front-half Rinses

Container Gross Wt.	g	296.5	
Container Empty Wt.	g	167.5	
Sample Volume	mLs	163.3	
Evap. Beaker No.	C22-8-40		
Beaker Tare Weight	g 30.29		
Beaker Final Weight	g	30.3450	
Blank Correction	mg	-0.1	
Net Weight	mg	47.5	

Dry Catch and Filter Weights

Filter No.	F22-9-10		
Filter Tare Weight	g 34.576		
Filter Final Weight	g 34.64		
Filter Blank	g	NA	
Net Weight	mg	69.7	

Acetone Field Reagent Blank

Container Gross Wt.	g	300.5		
Container Empty Wt.	g	166.9		
Reagent Blank Volume	Blank Volume mLs 1			
Evap. Beaker No.	C22-8-29			
Beaker Tare Weight	g 28.871			
Beaker Final Weight	g	28.8717		
Residue Weight	mg	0.1		
Blank Concentration	mg/mL	0.0006		

Filter Blank

● Not Used ○ Used		
Filter No.		
Filter Tare Weight	g	
Filter Final Weight	g	

Total Filterable Particulate Matter

Total Weight mg 117.2

Electronic Filing: Received, Clerk's Office 03/15/2024 Condensable Particulate Matter Analysis

Project	Ra	in	Location	K-1 Stack		
Project Number	4173		Method EPA M	lethods 5 a	nd 202	
Test Date	July 20	, 2023	Run No.	113		
	,	,				
Hexane Field Reager	Hexane Field Reagent Blank Water Field Reagent Blank					
Container Gross Wt.	g	344.6	Container Gross Wt.	g	261.0	
Container Empty Wt.	g	165.8	Container Empty Wt.	g	164.4	
Reagent Blank Volume	mLs	269.7	Water Blank Volume	mLs	96.8	
Evap. Beaker No.	C2	2-8-30	Evap. Beaker No.	C2	2-8-31	
Beaker Tare Weight	g	29.9420	Beaker Tare Weight	g	30.5884	
Beaker Final Weight	g	29.9428	Beaker Final Weight	g	30.5885	
Residue Weight	mg	0.8	Residue Weight	mg	0.1	
	Field	d Train Rec	overy (FTR) Blank			
Organic Fraction			Inorganic Fraction			
Container Gross Wt.	g	557.0	Container Gross Wt.	g	763.5	
Container Empty Wt.	g	297.0	Container Empty Wt.	g	504.1	
Sample Wt.	g	260.0	Sample Wt.	g	259.4	
Evap. Beaker No.	C2	2-8-35	Evap. Beaker No.	C2	2-8-34	
Beaker Tare Weight	g	29.9567	Beaker Tare Weight	g	29.5305	
Beaker Final Weight	g	29.9575	Beaker Final Weight	g	29.5332	
Net Weight	mg	0.8	Less NH4 ⁺ in Sample	mg	0.0	
Mass of NH ₄ ⁺ Added	To Sam	ble	Net Weight mg		2.7	
NH₄OH Normality	meq/mL	0.0000	Filter Weights			
Titrant Volume Used	mLs	0.0	Filter No.		NA	
NH4 ⁺ added to Sample	mg	0.0	Filter Tare Weight	g	0.0	
Total Condensable P	articulate	e Matter	Filter Final Weight	g	0.0	
Total FTR Blank CPM	mg	3.5	Net Weight	mg	0.0	
CPM Sampling Train						
Organic Fraction			Inorganic Fraction			
Container Gross Wt.	g	916.1	Container Gross Wt.	g	575.7	
Container Empty Wt.	g	506.0	Container Empty Wt.	g	297.5	
Sample Wt.	g	410.1	Sample Wt.	g	278.2	
Evap. Beaker No.	C22	2-10-23	Evap. Beaker No.	C2	2-8-73	
Beaker Tare Weight	g	1.6017	Beaker Tare Weight	g	29.4557	
Beaker Final Weight	g	1.6512	Beaker Final Weight	g	29.4593	
Net Weight	mg	49.5	Less NH_4^+ in Sample	mg	0.0	
Mass of NH ₄ ⁺ Added	To Sam	ole	Net Weight	mg	3.6	
NH₄OH Normality	meq/mL	0.0000	Filter Weights			
Titrant Volume Used	mLs	0.0	Filter No.		NA	
NH ₄ ⁺ added to Sample	mg	0.0	Filter Tare Weight	g	0.0	
Total Condensable P	articulat	e Matter	Filter Final Weight	g	0.0	
Total CPM Weight	mg	53.1	Net Weight	mg	0.0	
Blank Correction Used	mg	-2.0				
Corrected CPM Weight	mg	51.1	FTR Blank CPM was >2.	0 mg.		

Run Report - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	114

Stack or Duct Dimensions

Circular O Rectangular		
Diameter # 1	in.	122.000
Diameter # 2	in.	
Cross-Section Area	ft ²	81.180

Gas Stream Conditions

Avg. Gas Temperature	°F	847
Avg. Velocity Head (Δp)	in. H ₂ O	0.167
Static Gas Pressure	in. H ₂ O	0.00
Absolute Gas Pressure	in. Hg	29.19
O ₂ Concentration, Dry	%V	15.33
CO ₂ Concentration, Dry	%V	3.65
Moisture	%V	18.76
Dry Molecular Weight	lb/lb-mole	29.20
Wet Molecular Weight	lb/lb-mole	27.10

Dry Gas Meter Conditions				
Console Elevation	ft	0		
DGM Correction (Y)		1.015		
Average ∆H	in. H ₂ O	1.53		
Avg. DGM Temperature	٩F	88.0		
Initial DGM Volume	ft ³	787.750		
Final DGM Volume	ft ³	820.000		
Leak Check Volume	ft ³	-0.000		
Leak Correction Volume	ft ³			
Net DGM Volume	ft ³	32.250		
Dry Gas Sample Volume	dscf	31.003		

Other Related Data

Barometer Reading	in. Hg	29.31
Test Location Elevation	ft	125
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	in. H ₂ O	0.408

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	in.	0.388
Avg. Isokinetic Variation	%	108.8
IKV 90-110% Criterion		Pass

Average Gas Velocity	ft/min	2,261
Volumetric Flow, Actual	acfm	183,552
Corrected Flow, Wet	scfm	72,282
Corrected Flow, Dry	dscfm	58,725

Particulate Matter Emission Results		Filterable	Condensable	Total
Total Particulate Matter Collected	mg	176.2	89.5	265.7
Concentration (Wet)	mg/acf	1.82	0.924	2.74
Concentration (Wet)	gr/acf	0.0281	0.0143	0.0423
Concentration (Dry)	mg/dscf	5.68	2.89	8.57
Concentration (Dry)	gr/dscf	0.0877	0.0446	0.132
Emission Rate	lb/hr	44.1	22.4	66.6

Metric Equivalents - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	114

Stack or Duct Dimensions

Circular Crectange		
Diameter # 1	m	3.0988
Diameter # 2	m	3.0988
Cross-Section Area	m ²	7.5418

Gas Stream Conditions

Avg. Gas Temperature	°C	453
Avg. Velocity Head (Δp)	mm H_2O	4.2
Static Gas Pressure	mm H_2O	0.0
Absolute Gas Pressure	mm Hg	741.3
O ₂ Concentration, Dry	%V	15.33
CO ₂ Concentration, Dry	%V	3.65
Moisture	%V	18.76
Dry Molecular Weight	g/g-mole	29.20
Wet Molecular Weight	g/g-mole	27.10

Dry Gas Meter Conditions

Console Elevation	m	0.0
DGM Correction (Y)		1.015
Average ∆H	mm H_2O	38.9
Avg. DGM Temperature	° C	31.1
Initial DGM Volume	m ³	22.30660
Final DGM Volume	m ³	23.21981
Leak Check Volume	m ³	-0.00000
Leak Correction Volume	m ³	
Net DGM Volume	m ³	0.91322
Dry Gas Sample Volume	dscm	0.87789

Other Related Data

Barometer Reading	mm Hg	744.5
Test Location Elevation	m	38.1
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	mm H ₂ O	2.06

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	mm	9.86
Avg. Isokinetic Variation	%	108.8
IKV 90-110% Criterion		Pass

Average Gas Velocity	m/min	689.2
Volumetric Flow, Actual	acm/min	5,197.6
Corrected Flow, Wet	scm/min	2,046.80
Corrected Flow, Dry	dscm/min	1,662.90

Particulate Matter Emission Results		Filterable	Condensable	Total
Total Particulate Matter Collected	mg	176.2	89.5	265.7
Concentration (Wet)	mg/acm	64.2	32.6	96.8
Concentration (Dry)	mg/dscm	201	102	303
Emission Rate	kg/hr	20.0	10.2	30.2

Electronic Filing: Received, Clerk's Office 03/15/2024 Traverse Data - Particul

Traverse Data - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	114

Traverse	Gas	Δр	ΔH	DGM	DGM
Point	Temp., °F	in. H ₂ O	in. H ₂ O	Inlet, °F	Outlet, °F
A1	814	0.130	1.20	84	84
2	842	0.240	2.10	84	84
3	845	0.250	2.20	87	87
B1	813	0.200	1.80	86	86
2	845	0.050	0.50	88	88
3	853	0.200	1.80	88	88
C1	835	0.100	0.90	89	89
2	850	0.150	1.40	89	89
3	852	0.180	1.60	90	90
D1	861	0.140	1.20	90	90
2	877	0.210	1.80	90	90
3	881	0.220	1.90	91	91
Average	847	0.167	1.53	88.0	88.0

Leak Check Volumes

Initial			
Final			
Difference			

Filterable Particulate Matter and Moisture Analysis

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	114

Impinger Weights

Condenser &		Initial	Final	Difference
Knockout	g	648.5	798.0	149.5
CPM Impinger	g	579.9	579.9	0.0
H ₂ O Impinger	g	691.8	689.1	-2.7
H ₂ O Impinger	g			
Silica Gel	g	653.8	658.8	5.0
	Total Collected		g	151.8

Moisture Results

Moisture Volume	scf	7.157
Dry Gas Sample Volume	dscf	31.003
Sampled Moisture	%V	18.76
Saturation Moisture	%V	N/A
Reported Moisture	%V	18.76

Rinse Reagent

● Acetone ○ Water

Sampling Train Front-half Rinses

Container Gross Wt.	g	291.5
Container Empty Wt.	g	165.7
Sample Volume	mLs	159.2
Evap. Beaker No.	C22-8-74	
Beaker Tare Weight	g	29.6651
Beaker Final Weight	g	29.7389
Blank Correction	mg	-0.1
Net Weight	mg	73.7

Dry Catch and Filter Weights

Filter No.	F23-7-2	
Filter Tare Weight	g	29.3093
Filter Final Weight	g	29.4118
Filter Blank	g	NA
Net Weight	mg	102.5

Acetone Field Reagent Blank

Container Gross Wt.	g	300.5	
Container Empty Wt.	g	166.9	
Reagent Blank Volume	mLs	169.1	
Evap. Beaker No.	C22-8-29		
Beaker Tare Weight	g	28.8716	
Beaker Final Weight	g	28.8717	
Residue Weight	mg	0.1	
Blank Concentration	mg/mL	0.0006	

Filter Blank

● Not Used ○ Used		
Filter No.		
Filter Tare Weight	g	
Filter Final Weight	g	

Total Filterable Particulate Matter

Total Weight mg 176.2

Electronic Filing: Received, Clerk's Office 03/15/2024 Condensable Particulate Matter Analysis

Project	Ra	in	Location	K-1 Stack	
Project Number	4173		Method EPA M	ethods 5 a	nd 202
Test Date	te July 20, 2023		Run No.	114	
	Suly 20	, 2025		111	
Hexane Field Reager	t Blank		Water Field Reagent	Blank	
Container Gross Wt.	g	344.6	Container Gross Wt.	g	261.0
Container Empty Wt.	g	165.8	Container Empty Wt.	g	164.4
Reagent Blank Volume	-	269.7	Water Blank Volume	mLs	96.8
Evap. Beaker No.	C2	2-8-30	Evap. Beaker No.	C2	2-8-31
Beaker Tare Weight	g	29.9420	Beaker Tare Weight	g	30.5884
Beaker Final Weight	g	29.9428	Beaker Final Weight	g	30.5885
Residue Weight	mg	0.8	Residue Weight	mg	0.1
	Field	d Train Rec	overy (FTR) Blank		
Organic Fraction			Inorganic Fraction		
Container Gross Wt.	g	557.0	Container Gross Wt.	g	763.5
Container Empty Wt.	g	297.0	Container Empty Wt.	g	504.1
Sample Wt.	g	260.0	Sample Wt.	g	259.4
Evap. Beaker No.	C2	2-8-35	Evap. Beaker No.	_	2-8-34
Beaker Tare Weight	g	29.9567	Beaker Tare Weight	g	29.5305
Beaker Final Weight	g	29.9575	Beaker Final Weight	g	29.5332
Net Weight	mg	0.8	Less NH ₄ ⁺ in Sample	mg	0.0
Mass of NH ₄ ⁺ Added	To Samp	ole	Net Weight	mg	2.7
NH₄OH Normality	meq/mL	0.0000	Filter Weights		
Titrant Volume Used	mLs	0.0	Filter No.		NA
NH4 ⁺ added to Sample	mg	0.0	Filter Tare Weight	g	0.0
Total Condensable Pa	articulate	e Matter	Filter Final Weight	g	0.0
Total FTR Blank CPM	mg	3.5	Net Weight	mg	0.0
		CPM Sar	npling Train		
Organic Fraction			Inorganic Fraction		
Container Gross Wt.	g	857.8	Container Gross Wt.	g	560.9
Container Empty Wt.	g	501.5	Container Empty Wt.	g	295.2
Sample Wt.	g	356.3	Sample Wt.	g	265.7
Evap. Beaker No.	C22	-10-24	Evap. Beaker No.	C2	2-8-75
Beaker Tare Weight	g	1.6011	Beaker Tare Weight	g	28.5397
Beaker Final Weight	g	1.6891	Beaker Final Weight	g	28.5432
Net Weight	mg	88.0	Less NH_4^+ in Sample	mg	0.0
Mass of NH ₄ ⁺ Added	To Samp	ole	Net Weight	mg	3.5
NH₄OH Normality	meq/mL	0.0000	Filter Weights		
Titrant Volume Used	mLs	0.0	Filter No.		NA
NH ₄ ⁺ added to Sample	mg	0.0	Filter Tare Weight	g	0.0
Total Condensable Pa	articulate	e Matter	Filter Final Weight	g	0.0
Total CPM Weight	mg	91.5	Net Weight	mg	0.0
Blank Correction Used	mg	-2.0			
Corrected CPM Weight	mg	89.5	FTR Blank CPM was >2.	0 mg.	

Run Report - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	115

Stack or Duct Dimensions

Circular O Rectanged	○ Rectangular	
Diameter # 1	in.	122.000
Diameter # 2	in.	122.000
Cross-Section Area	ft ²	81.180

Gas Stream Conditions

Avg. Gas Temperature	°F	931
Avg. Velocity Head (Δp)	in. H ₂ O	0.175
Static Gas Pressure	in. H ₂ O	0.00
Absolute Gas Pressure	in. Hg	29.20
O ₂ Concentration, Dry	%V	14.97
CO ₂ Concentration, Dry	%V	3.85
Moisture	%V	19.62
Dry Molecular Weight	lb/lb-mole	29.21
Wet Molecular Weight	lb/lb-mole	27.01

Dry Gas Meter Conditions			
Console Elevation	ft	0	
DGM Correction (Y)	_	1.015	
Average ∆H	in. H ₂ O	1.65	
Avg. DGM Temperature	°F	92.1	
Initial DGM Volume	ft ³	821.200	
Final DGM Volume	ft ³	854.600	
Leak Check Volume	ft ³	-0.000	
Leak Correction Volume	ft ³		
Net DGM Volume	ft ³	33.400	
Dry Gas Sample Volume	dscf	31.891	

Other Related Data

Barometer Reading	in. Hg	29.32
Test Location Elevation	ft	125
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	in. H ₂ O	0.418

Sampling Conditions

Sampling Time	min	48.00
Avg. Nozzle Diameter	in.	0.396
Avg. Isokinetic Variation	%	109.2
IKV 90-110% Criterion		Pass

Average Gas Velocity	ft/min	2,392
Volumetric Flow, Actual	acfm	194,172
Corrected Flow, Wet	scfm	71,881
Corrected Flow, Dry	dscfm	57,778

Particulate Matter Emission Res	ults	Filterable	Filterable Condensable	
Total Particulate Matter Collected	mg	215.8	141.2	357.0
Concentration (Wet)	mg/acf	2.01	1.32	3.33
Concentration (Wet)	gr/acf	0.0311	0.0203	0.0514
Concentration (Dry)	mg/dscf	6.77	4.43	11.2
Concentration (Dry)	gr/dscf	0.104	0.0683	0.173
Emission Rate	lb/hr	51.7	33.8	85.6

Metric Equivalents - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	115

Stack or Duct Dimensions

●Circular ○ Rectangular		
Diameter # 1	m	3.0988
Diameter # 2	m	3.0988
Cross-Section Area	m ²	7.5418

Gas Stream Conditions

Avg. Gas Temperature	°C	500
Avg. Velocity Head (Δp)	mm H_2O	4.4
Static Gas Pressure	mm H_2O	0.0
Absolute Gas Pressure	mm Hg	741.6
O ₂ Concentration, Dry	%V	14.97
CO ₂ Concentration, Dry	%V	3.85
Moisture	%V	19.62
Dry Molecular Weight	g/g-mole	29.21
Wet Molecular Weight	g/g-mole	27.01

Dry Gas Meter Conditions

Console Elevation	m	0.0
DGM Correction (Y)		1.015
Average ∆H	mm H_2O	41.9
Avg. DGM Temperature	° C	33.4
Initial DGM Volume	m ³	23.25379
Final DGM Volume	m ³	24.19958
Leak Check Volume	m ³	-0.00000
Leak Correction Volume	m ³	
Net DGM Volume	m ³	0.94578
Dry Gas Sample Volume	dscm	0.90304

Other Related Data

Barometer Reading	mm Hg	744.7
Test Location Elevation	m	38.1
Pitot Tube Coefficient	—	0.840
Average SQRT(Δp)	mm H ₂ O	2.11

Sampling Conditions

min	48.00
mm	10.06
%	109.2
_	Pass
	mm

Average Gas Velocity	m/min	729.0
Volumetric Flow, Actual	acm/min	5,498.3
Corrected Flow, Wet	scm/min	2,035.45
Corrected Flow, Dry	dscm/min	1,636.08

Particulate Matter Emission Results		Filterable	Condensable	Total
Total Particulate Matter Collected	mg	215.8	141.2	357.0
Concentration (Wet)	mg/acm	71.1	46.5	118
Concentration (Dry)	mg/dscm	239	156	395
Emission Rate	kg/hr	23.5	15.3	38.8

Electronic Filing: Received, Clerk's Office 03/15/2024 Traverse Data - Particul

Traverse Data - Particulate Matter

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	115

Traverse	Gas	Δр	ΔH	DGM	DGM
Point	Temp., °F	in. H ₂ O	in. H ₂ O	Inlet, °F	Outlet, °F
A1	886	0.100	1.00	89	89
2	909	0.190	2.00	90	90
3	930	0.230	2.10	91	91
B1	901	0.120	1.10	91	91
2	924	0.150	1.40	92	92
3	934	0.200	1.80	92	92
C1	925	0.120	1.10	92	92
2	922	0.170	1.60	93	93
3	941	0.200	1.80	93	93
D1	950	0.150	1.40	94	94
2	970	0.250	2.20	94	94
3	982	0.260	2.30	94	94
Average	931	0.175	1.65	92.1	92.1

Leak Check Volumes

Initial			
Final			
Difference			

Filterable Particulate Matter and Moisture Analysis

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Methods 5 and 202
Test Date	July 20, 2023	Run No.	115

Impinger Weights

Condenser &		Initial	Final	Difference
Knockout	g	770.1	922.2	152.1
CPM Impinger	g	605.9	606.0	0.1
H ₂ O Impinger	g	615.9	605.4	-10.5
H ₂ O Impinger	g			
Silica Gel	g	741.4	764.8	23.4
	Total Collected		g	165.1

Moisture Results

Moisture Volume	scf	7.784
Dry Gas Sample Volume	dscf	31.891
Sampled Moisture	%V	19.62
Saturation Moisture	%V	N/A
Reported Moisture	%V	19.62

Rinse Reagent

● Acetone ○ Water

Sampling Train Front-half Rinses

Container Gross Wt.	g	306.4	
Container Empty Wt.	g	165.7	
Sample Volume	mLs	178.1	
Evap. Beaker No.	C22-8-76		
Beaker Tare Weight	g	31.3314	
Beaker Final Weight	g	31.4437	
Blank Correction	mg	-0.1	
Net Weight	mg	112.2	

Dry Catch and Filter Weights

Filter No.	F22-10-24		
Filter Tare Weight	g 37.046		
Filter Final Weight	g	37.1496	
Filter Blank	g	NA	
Net Weight	mg	103.6	

Acetone Field Reagent Blank

Container Gross Wt.	g	300.5	
Container Empty Wt.	g	166.9	
Reagent Blank Volume	mLs	169.1	
Evap. Beaker No.	C22-8-29		
Beaker Tare Weight	g	28.8716	
Beaker Final Weight	g	28.8717	
Residue Weight	mg	0.1	
Blank Concentration	mg/mL	0.0006	

Filter Blank

● Not Used ○ Used		
Filter No.		
Filter Tare Weight	g	
Filter Final Weight	g	

Total Filterable Particulate Matter

Total Weight mg 215.8

Electronic Filing: Received, Clerk's Office 03/15/2024 Condensable Particulate Matter Analysis

Project	Ra	in	Location	K-1 Stack	
Project Number	4173		Method EPA M	ethods 5 a	and 202
Test Date	July 20	2023	Run No.	115	
	Suly 20	, 2025		115	
Hexane Field Reager	t Blank		Water Field Reagent	Blank	
Container Gross Wt.	g	344.6	Container Gross Wt.	g	261.0
Container Empty Wt.	g	165.8	Container Empty Wt.	g	164.4
Reagent Blank Volume	mLs	269.7	Water Blank Volume	mLs	96.8
Evap. Beaker No.	C2	2-8-30	Evap. Beaker No.	C2	2-8-31
Beaker Tare Weight	g	29.9420	Beaker Tare Weight	g	30.5884
Beaker Final Weight	g	29.9428	Beaker Final Weight	g	30.5885
Residue Weight	mg	0.8	Residue Weight	mg	0.1
	Field	d Train Rec	overy (FTR) Blank		
Organic Fraction			Inorganic Fraction		
Container Gross Wt.	g	557.0	Container Gross Wt.	g	763.5
Container Empty Wt.	g	297.0	Container Empty Wt.	g	504.1
Sample Wt.	g	260.0	Sample Wt.	g	259.4
Evap. Beaker No.	C2	2-8-35	Evap. Beaker No.	C2	2-8-34
Beaker Tare Weight	g	29.9567	Beaker Tare Weight	g	29.5305
Beaker Final Weight	g	29.9575	Beaker Final Weight	g	29.5332
Net Weight	mg	0.8	Less NH ₄ ⁺ in Sample	mg	0.0
Mass of NH ₄ ⁺ Added	To Samp	ole	Net Weight	mg	2.7
NH₄OH Normality	meq/mL	0.0000	Filter Weights		
Titrant Volume Used	mLs	0.0	Filter No.		NA
NH4 ⁺ added to Sample	mg	0.0	Filter Tare Weight	g	0.0
Total Condensable P	articulate	e Matter	Filter Final Weight	g	0.0
Total FTR Blank CPM	mg	3.5	Net Weight	mg	0.0
		CPM Sar	npling Train		-
Organic Fraction			Inorganic Fraction		
Container Gross Wt.	g	876.0	Container Gross Wt.	g	557.3
Container Empty Wt.	g	502.3	Container Empty Wt.	g	296.5
Sample Wt.	g	373.7	Sample Wt.	g	260.8
Evap. Beaker No.	C2	2-8-77	Evap. Beaker No.	C2	2-8-78
Beaker Tare Weight	g	31.2497	Beaker Tare Weight	g	28.9085
Beaker Final Weight	g	31.3864	Beaker Final Weight	g	28.9150
Net Weight	mg	136.7	Less NH_4^+ in Sample	mg	0.0
Mass of NH ₄ ⁺ Added	To Samp	ole	Net Weight	mg	6.5
NH₄OH Normality	meq/mL	0.0000	Filter Weights		
Titrant Volume Used	mLs	0.0	Filter No.		NA
NH ₄ ⁺ added to Sample	mg	0.0	Filter Tare Weight	g	0.0
Total Condensable P	articulate	e Matter	Filter Final Weight	g	0.0
Total CPM Weight	mg	143.2	Net Weight	mg	0.0
Blank Correction Used	mg	-2.0			
Corrected CPM Weight	mg	141.2	FTR Blank CPM was >2.	0 mg.	

Appendix B-2

Instrumental Analyzer Results

Initial Instrument Calibrations

Project No.		4173	Project	Ra	in CII Inv. '23	
Test Date		7/20/2023	Location		Kiln #1	
		Standards	Calibrati	on Error	Calibrat	ion Bias
	Span	EPA Protocol Gas	Instrument Response	Calibration Error	System Response	Calibration Bias
02	21	0 12.11 % v/v 21	0.00 12.25 20.98	0.0% 0.7% -0.1%	0.04 12.06	0.2% -0.9%
CO ₂	12	0 5.86 % v/v 12.36	-0.01 5.93 12.35	0.0% 0.6% -0.1%	0.16	1.4% 0.7%
		Standards			System I	Response
	Span	EPA Protocol Gas			System Response	Calibration Error
тнс	25	0.0 ppmv 8.4 ppmv 16.2 ppmv 30.2 ppmv			-0.1 8.5 16.1 30.0	1.2% -0.5%
	50	51.9 ppmv			52.0	0.2%

F

Project No.		417	73			
Project		Rain CII	Inv. '23			
Run ID: 1-1-1						
		Location				
		Kiln #1				
Date	9					
7/20/20		Ad	justed Da	ata		
Time 09:45-1		02	CO2	THC		
09:45-1	0:30	02 % v/v	% v/v	ppmv		
		dry	dry	wet		
		17.72	1.86	4.4		
Gas Stan		ent Respo		8.4		
Gas Stan	dards	12.11	12.36	8.4		
Initial	Zero	0.04	0.16	-0.1		
Calibration	Upscale	12.06	12.43	8.5		
	ata	17.60	2.02	4.33		
Raw Da		0.14	0.18	-0.1		
Final	Zero	0.11	0.10	• •		
	Zero Upscale	12.06	12.49	8.3		
Final	Upscale	-	12.49	-		
Final	Upscale Calibratio	12.06	12.49	-		
Final Calibration Instrumen	Upscale Calibratio	12.06	12.49 mance	8.3		
Final Calibration	Upscale Calibration t Span	12.06 DN Perform 21	12.49 mance 12	8.3 25 -0.2%		
Final Calibration Instrumen Initial Bias	Upscale Calibratio t Span Zero	12.06 DN Perform 21 0.2%	12.49 mance 12 1.4%	8.3 25 -0.2% 0.4%		
Final Calibration Instrumen	Upscale Calibration t Span Zero Upscale	12.06 DN Perform 21 0.2% -0.9%	12.49 mance 12 1.4% 0.7%	8.3 25 -0.2% 0.4% -0.4%		
Final Calibration Instrumen Initial Bias	Upscale Calibration t Span Zero Upscale Zero	12.06 DN Perform 21 0.2% -0.9% 0.6%	12.49 mance 12 1.4% 0.7% 1.5%	8.3		

Project No.		417	73			
Project		Rain CII	Inv. '23			
Run ID: 1-1-2						
r		Location				
		Kiln #1				
Date 7/20/20		۵d	justed Da	ata		
Time			Justeu D	ata		
10:45-1	1:30	02	CO2	THC		
		% v/v	% v/v	ppmv		
		dry 16.66	dry 2.62	wet 0.9		
		10.00		UID		
	Instrum	ent Respo	onses			
Gas Stan	dards	12.11	12.36	8.4		
Initial	Zero	0.14	0.18	-0.1		
Calibration	Upscale	12.06	12.49	8.3		
Raw D	ata	16.52	2.81	0.75		
Final	Zero	0.05	0.24	-0.2		
Calibration	Upscale	12.00	12.45	8.2		
	Calibrati	on Perforr	mance			
Instrumen	it Span	21	12	25		
Initial Bias	Zero	0.6%	1.5%	-0.4%		
	Upscale	-0.9%	1.1%	-0.4%		
	opeene					
	Zero		2.0%	-0.7%		
Final Bias		0.2% -1.2%	2.0% 0.8%	-0.7% -0.7%		
	Zero					

F

Project No.		417	73			
Project		Rain CII	Inv. '23			
		n ID: 1-1-3	3			
		Location Kiln #1				
Date						
7/20/20	1	Ad	justed Da	ata		
Time		•	•			
11:45-1	2:30	O2 % v/v	CO2 % v/v	THC ppmv		
		dry	dry	wet		
		16.34	2.98	0.8		
r						
	Instrum	ent Respo	onses			
Gas Standards		12.11	12.20	8.4		
543 5441	uarus	12.11	12.36	0.4		
Initial Calibration	Zero	0.05	0.24	-0.2		
Initial	Zero Upscale			-0.2		
Initial Calibration	Zero Upscale	0.05 12.00	0.24 12.45	-0.2 8.2		
Initial Calibration Raw Da	Zero Upscale ata	0.05 12.00 16.15	0.24 12.45 3.17	-0.2 8.2 0.64		
Initial Calibration Raw Da Final	Zero Upscale ata Zero Upscale	0.05 12.00 16.15 0.16 11.99	0.24 12.45 3.17 0.22 12.42	-0.2 8.2 0.64 -0.2		
Initial Calibration Raw Da Final Calibration	Zero Upscale ata Zero Upscale Calibrati	0.05 12.00 16.15 0.16 11.99 on Perform	0.24 12.45 3.17 0.22 12.42 mance	-0.2 8.2 0.64 -0.2 8.2		
Initial Calibration Raw Da Final	Zero Upscale ata Zero Upscale Calibrati	0.05 12.00 16.15 0.16 11.99	0.24 12.45 3.17 0.22 12.42	-0.2 8.2 0.64 -0.2		
Initial Calibration Raw Da Final Calibration Instrumen	Zero Upscale ata Zero Upscale Calibrati	0.05 12.00 16.15 0.16 11.99 on Perform	0.24 12.45 3.17 0.22 12.42 mance	-0.2 8.2 0.64 -0.2 8.2		
Initial Calibration Raw Da Final Calibration	Zero Upscale ata Zero Upscale Calibrati t Span	0.05 12.00 16.15 0.16 11.99 on Perform 21	0.24 12.45 3.17 0.22 12.42 mance 12	-0.2 8.2 0.64 -0.2 8.2 25		
Initial Calibration Raw Da Final Calibration Instrumen Initial Bias	Zero Upscale ata Zero Upscale Calibrati t Span Zero Upscale	0.05 12.00 16.15 0.16 11.99 on Perforr 21 0.2%	0.24 12.45 3.17 0.22 12.42 mance 12 2.0% 0.8%	-0.2 8.2 0.64 -0.2 8.2 25 -0.7%		
Initial Calibration Raw Da Final Calibration Instrumen	Zero Upscale ata Zero Upscale Calibrati t Span Zero	0.05 12.00 16.15 0.16 11.99 on Perform 21 0.2% -1.2%	0.24 12.45 3.17 0.22 12.42 mance 12 2.0%	-0.2 8.2 0.64 -0.2 8.2 25 -0.7% -0.7%		
Initial Calibration Raw Da Final Calibration Instrumen Initial Bias	Zero Upscale ata Zero Upscale Calibrati t Span Zero Upscale Zero	0.05 12.00 16.15 0.16 11.99 on Perform 21 0.2% -1.2% 0.7%	0.24 12.45 3.17 0.22 12.42 mance 12 2.0% 0.8% 1.8%	-0.2 8.2 0.64 -0.2 8.2 25 -0.7% -0.7% -0.8%		

During the		41-	70			
Project No.		417	/3			
Project		Rain CII	Inv. '23			
Run ID: 1-1-4						
		Location	•			
		Kiln #1				
Date						
7/20/20		Ad	justed Da	ata		
Time	9					
12:47-1	3:32	02	CO2	THC		
		% v/v	% v/v	ppmv _{wet}		
		dry 15.90	dry 3.04	0.7		
Instrument Responses						
	Instrum	ent kesp	511363			
Gas Stan		12.11	12.36	8.4		
Gas Stan Initial				8.4		
	dards	12.11	12.36	-		
Initial	dards Zero Upscale	12.11 0.16	12.36 0.22	-0.2		
Initial Calibration	dards Zero Upscale	12.11 0.16 11.99	12.36 0.22 12.42	-0.2 8.2		
Initial Calibration Raw D	dards Zero Upscale ata	12.11 0.16 11.99 15.71	12.36 0.22 12.42 3.18	-0.2 8.2 0.51		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale	12.11 0.16 11.99 15.71 0.10	12.36 0.22 12.42 3.18 0.15 12.34	-0.2 8.2 0.51 -0.2		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.16 11.99 15.71 0.10 12.00	12.36 0.22 12.42 3.18 0.15 12.34	-0.2 8.2 0.51 -0.2		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.16 11.99 15.71 0.10 12.00 Deform	12.36 0.22 12.42 3.18 0.15 12.34 mance	-0.2 8.2 0.51 -0.2 8.2		
Initial Calibration Raw Da Final Calibration	dards Zero Upscale ata Zero Upscale Calibratio t Span	12.11 0.16 11.99 15.71 0.10 12.00 Dn Perfor 21	12.36 0.22 12.42 3.18 0.15 12.34 mance 12	-0.2 8.2 0.51 -0.2 8.2 25		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero	12.11 0.16 11.99 15.71 0.10 12.00 Dn Perform 21 0.7%	12.36 0.22 12.42 3.18 0.15 12.34 mance 12 1.8%	-0.2 8.2 0.51 -0.2 8.2 25 -0.8%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero Upscale	12.11 0.16 11.99 15.71 0.10 12.00 DN Perform 21 0.7% -1.2%	12.36 0.22 12.42 3.18 0.15 12.34 mance 12 1.8% 0.6%	-0.2 8.2 0.51 -0.2 8.2 25 -0.8% -0.7%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero Upscale Zero	12.11 0.16 11.99 15.71 0.10 12.00	12.36 0.22 12.42 3.18 0.15 12.34 mance 12 1.8% 0.6% 1.2%	-0.2 8.2 0.51 -0.2 8.2 25 -0.8% -0.7%		

Project No.		417	73				
FIOJECT NO.		717	5				
Project		Rain CII	Inv. '23				
_							
Run ID: 1-1-5							
· F		Location					
		Kiln #1					
Date	1						
7/20/2		Ad	justed Da	ata			
Time 13:45-1		02	CO2	THC			
15.15 1	1.50	% v/v	% v/v	ppmv			
		dry	dry	wet			
		16.07	3.16	0.7			
	Instrum	ent Respo	onses				
Gas Stan	dards	12.11	12.36	8.4			
Initial	Zero	0.10	0.15	-0.2			
Calibration	Upscale	12.00	12.34	8.2			
Raw D	ata	15.92	3.26	0.46			
Raw Data				••••			
Final	Zero	0.06	0.15	-0.3			
Final Calibration	Zero Upscale	0.06 12.03	0.15 12.34				
-		12.03	12.34	-0.3			
-	Upscale Calibratio	12.03	12.34	-0.3			
Calibration	Upscale Calibratio	12.03	12.34 mance	-0.3 8.2			
Calibration	Upscale Calibratio t Span	12.03	12.34 mance 12	-0.3 8.2 25			
Calibration Instrumer Initial Bias	Upscale Calibratic t Span Zero	12.03 on Perform 21 0.5%	12.34 mance 12 1.2%	-0.3 8.2 25 -0.8%			
Calibration	Upscale Calibratic t Span Zero Upscale	12.03 on Perform 21 0.5% -1.2%	12.34 mance 12 1.2% -0.1%	-0.3 8.2 25 -0.8% -0.7%			
Calibration Instrumer Initial Bias	Upscale Calibratic t Span Zero Upscale Zero	12.03 DN Perform 21 0.5% -1.2% 0.3%	12.34 mance 12 1.2% -0.1% 1.2%	-0.3 8.2 25 -0.8% -0.7% -1.1%			

Project No.		417	72			
Project No.		717	/ 5			
Project		Rain CII	Inv. '23			
		ID: 1-1-0	6			
		Location				
		Kiln #1				
Date			insted D	-+-		
7/20/20 Time		Ad	justed Da	ata		
14:45-1		02	CO2	THC		
1	0.00	% v/v	% v/v	ppmv		
		dry	dry	wet		
		15.93	3.31	0.6		
Instrument Responses						
Gas Stan		12.11	12.36	8.4		
Gas Stan		-		8.4 -0.3		
	dards	12.11	12.36 0.15			
Initial	dards Zero Upscale	0.06	12.36 0.15	-0.3		
Initial Calibration	dards Zero Upscale	12.11 0.06 12.03	12.36 0.15 12.34	-0.3 8.2		
Initial Calibration Raw Da	dards Zero Upscale ata	12.11 0.06 12.03 15.79	12.36 0.15 12.34 3.40	-0.3 8.2 0.37		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale	12.11 0.06 12.03 15.79 0.07	12.36 0.15 12.34 3.40 0.14 12.32	-0.3 8.2 0.37 -0.3		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.06 12.03 15.79 0.07 12.01	12.36 0.15 12.34 3.40 0.14 12.32	-0.3 8.2 0.37 -0.3		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span	12.11 0.06 12.03 15.79 0.07 12.01	12.36 0.15 12.34 3.40 0.14 12.32 mance	-0.3 8.2 0.37 -0.3 8.2		
Initial Calibration Raw Da Final Calibration	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.06 12.03 15.79 0.07 12.01 on Perform 21	12.36 0.15 12.34 3.40 0.14 12.32 mance 12	-0.3 8.2 0.37 -0.3 8.2 25		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero	12.11 0.06 12.03 15.79 0.07 12.01 on Perform 21 0.3%	12.36 0.15 12.34 3.40 0.14 12.32 mance 12 1.2%	-0.3 8.2 0.37 -0.3 8.2 25 -1.1%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero Upscale	12.11 0.06 12.03 15.79 0.07 12.01 DN Perform 21 0.3% -1.1%	12.36 0.15 12.34 3.40 0.14 12.32 mance 12 1.2% -0.1%	-0.3 8.2 0.37 -0.3 8.2 25 -1.1% -0.8%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero Upscale Zero	12.11 0.06 12.03 15.79 0.07 12.01 on Perform 21 0.3% -1.1% 0.3%	12.36 0.15 12.34 3.40 0.14 12.32 mance 12 1.2% -0.1% 1.2%	-0.3 8.2 0.37 -0.3 8.2 25 -1.1% -0.8% -1.1%		

Project No.		417	73	
Project		Rain CII	Inv. '23	
Troject			1117. 23	
			_	
		ID: 1-1-7	/	
		Location		
D.t.		Kiln #1		
Date 7/20/20		Δd	justed Da	ata
Time			Justeu B	
15:45-1		02	CO2	THC
		% v/v	% v/v	ppmv
		dry	dry	wet
		15.69	3.47	0.7
	Inctrum	ent Respo	oncoc	
		-	511565	
Gas Stan	dards	12.11	12.36	8.4
Initial	Zero	0.07	0.14	-0.3
Calibration	Upscale	12.01	12.32	8.2
Raw D	ata	15.58	3.58	0.45
Final	Zero	0.02	0.10	
		0.02	0.18	-0.2
Calibration	Upscale	12.06	0.18 12.40	-0.2 8.3
-	Upscale	12.06	12.40	
Calibration	Upscale Calibratio	12.06	12.40 mance	8.3
-	Upscale Calibratio	12.06	12.40	
Calibration	Upscale Calibratio	12.06	12.40 mance	8.3
Calibration	Upscale Calibratio t Span	12.06 DN Perform 21	12.40 mance 12	8.3
Calibration Instrumen Initial Bias	Upscale Calibration t Span Zero Upscale	12.06 DN Perform 21 0.3% -1.2%	12.40 mance 12 1.2% -0.2%	8.3 25 -1.1% -0.7%
Calibration	Upscale Calibration t Span Zero Upscale Zero	12.06 DN Perform 21 0.3% -1.2% 0.1%	12.40 mance 12 1.2% -0.2% 1.5%	8.3 25 -1.1% -0.7% -0.6%
Calibration Instrumen Initial Bias	Upscale Calibration t Span Zero Upscale Zero Upscale	12.06 DN Perform 21 0.3% -1.2% 0.1% -0.9%	12.40 mance 12 1.2% -0.2% 1.5% 0.4%	8.3 25 -1.1% -0.7% -0.6% -0.3%
Calibration Instrumen Initial Bias	Upscale Calibration t Span Zero Upscale Zero	12.06 DN Perform 21 0.3% -1.2% 0.1%	12.40 mance 12 1.2% -0.2% 1.5%	8.3 25 -1.1% -0.7% -0.6%

Project No.		417	73			
Project		Rain CII	Inv. '23			
Run ID: 1-1-8						
		Location	<u> </u>			
		Kiln #1				
Date	e					
7/20/20	023	Ad	justed Da	ata		
Time						
16:46-1	/:31	O2 % v/v	CO2 % v/v	THC ppmv		
		dry	dry	wet		
		15.33	3.65	0.6		
Instrument Responses						
Gas Stan		12.11	12.36	8.4		
Gas Stan		-		8.4 -0.2		
[dards	12.11	12.36			
Initial	dards Zero Upscale	0.02	12.36 0.18	-0.2		
Initial Calibration	dards Zero Upscale	12.11 0.02 12.06	12.36 0.18 12.40	-0.2 8.3		
Initial Calibration Raw D	dards Zero Upscale ata Zero	12.11 0.02 12.06 15.27	12.36 0.18 12.40 3.78	-0.2 8.3 0.50		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale	12.11 0.02 12.06 15.27 0.03	12.36 0.18 12.40 3.78 0.18 12.36	-0.2 8.3 0.50 0.0		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.02 12.06 15.27 0.03 12.08	12.36 0.18 12.40 3.78 0.18 12.36	-0.2 8.3 0.50 0.0		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.02 12.06 15.27 0.03 12.08	12.36 0.18 12.40 3.78 0.18 12.36 mance	-0.2 8.3 0.50 0.0 8.4		
Initial Calibration Raw Da Final Calibration	dards Zero Upscale ata Zero Upscale Calibratio t Span	12.11 0.02 12.06 15.27 0.03 12.08 on Perfor 21	12.36 0.18 12.40 3.78 0.18 12.36 mance 12	-0.2 8.3 0.50 0.0 8.4 25		
Initial Calibration Raw Da Final Calibration Instrumen Initial Bias	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero	12.11 0.02 12.06 15.27 0.03 12.08 on Perform 21 0.1%	12.36 0.18 12.40 3.78 0.18 12.36 mance 12 1.5%	-0.2 8.3 0.50 0.0 8.4 25 -0.6%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero Upscale	12.11 0.02 12.06 15.27 0.03 12.08 on Perform 21 0.1% -0.9%	12.36 0.18 12.40 3.78 0.18 12.36 mance 12 1.5% 0.4%	-0.2 8.3 0.50 0.0 8.4 25 -0.6% -0.3%		
Initial Calibration Raw Da Final Calibration Instrumen Initial Bias	dards Zero Upscale ata Zero Upscale t Span Zero Upscale Zero	12.11 0.02 12.06 15.27 0.03 12.08	12.36 0.18 12.40 3.78 0.18 12.36 mance 12 1.5% 0.4% 1.5%	-0.2 8.3 0.50 0.0 8.4 25 -0.6% -0.3% -0.1%		

Project No.		417	73			
Project		Rain CII	Inv '23			
Project			1110. 25			
	Run	ID: 1-1-9	9			
r		Location				
		Kiln #1				
Date						
7/20/20		Ad	justed Da	ata		
Time 17:45-1		02	CO2	THC		
1/1/01	0.50	% v/v	% v/v	ppmv		
		dry	dry	wet		
		14.97	3.85	0.6		
Instrument Responses						
	Instrum	ent Resp	onses			
Gas Stan		ent Respo 12.11	12.36	8.4		
Gas Stan		-		8.4		
	dards Zero	12.11	12.36	-		
Initial	dards Zero Upscale	0.03	12.36 0.18	0.0		
Initial Calibration	dards Zero Upscale	12.11 0.03 12.08	12.36 0.18 12.36	0.0 8.4		
Initial Calibration Raw Da	dards Zero Upscale ata Zero	12.11 0.03 12.08 14.88	12.36 0.18 12.36 3.95	0.0 8.4 0.51		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale	12.11 0.03 12.08 14.88 0.02	12.36 0.18 12.36 3.95 0.14 12.33	0.0 8.4 0.51 -0.1		
Initial Calibration Raw Da Final	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.03 12.08 14.88 0.02 12.01	12.36 0.18 12.36 3.95 0.14 12.33	0.0 8.4 0.51 -0.1		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span	12.11 0.03 12.08 14.88 0.02 12.01 on Perform 21	12.36 0.18 12.36 3.95 0.14 12.33 mance	0.0 8.4 0.51 -0.1 8.3 25		
Initial Calibration Raw Da Final Calibration	dards Zero Upscale ata Zero Upscale Calibratic	12.11 0.03 12.08 14.88 0.02 12.01 Deform	12.36 0.18 12.36 3.95 0.14 12.33 mance 12	0.0 8.4 0.51 -0.1 8.3		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratio t Span Zero Upscale	12.11 0.03 12.08 14.88 0.02 12.01 on Perform 21 0.1% -0.8%	12.36 0.18 12.36 3.95 0.14 12.33 mance 12 1.5% 0.1%	0.0 8.4 0.51 -0.1 8.3 25 -0.1% -0.2%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale Calibratic t Span Zero	12.11 0.03 12.08 14.88 0.02 12.01 on Perform 21 0.1%	12.36 0.18 12.36 3.95 0.14 12.33 mance 12 1.5%	0.0 8.4 0.51 -0.1 8.3 25 -0.1%		
Initial Calibration Raw Da Final Calibration Instrumen	dards Zero Upscale ata Zero Upscale t Span Zero Upscale Zero	12.11 0.03 12.08 14.88 0.02 12.01 on Perform 21 0.1% 0.1%	12.36 0.18 12.36 3.95 0.14 12.33 mance 12 1.5% 0.1% 1.2%	0.0 8.4 0.51 -0.1 8.3 25 -0.1% -0.2% -0.3%		

ARSOURCE Filing: Received, Clerk's Office 03/15/2024 Gaseous Emission Rates

Project No.		4173	Project	Rain CII Inv. '23
	Run Il	D: 1-1-1		Location: Kiln #1
Flow Rate		Flow Trai	n ID: 1-1-1	Date Gas Time(s)
Gas Velocity		ft/min	1,829	7/20/2023 09:45-10:30
Volumetric Flow	, Actual	acfm	148,456	Flow Time(s)
Corrected Flow,	Wet	scfm	80,207	09:44-10:49
Corrected Flow,		dscfm	75,497	05.1110.15
Pollutant Emiss			TGOC	
Molecular Weigh		g/g-mol	44.1	
	(dry)	ppmv	4.6	
Concentration	(wet)	ppmv	4.4	
Control a dion	(dry)	lb/dscf	5.31E-7	
	(wet)	lb/scf	5.00E-7	
Emission Rate		lb/hr	2.41	
	Run Il	D: 1-1-2		Location: Kiln #1
Flow Rate		Flow Tra	in ID 1-1-2	Date Gas Time(s)
Gas Velocity		ft/min	2,177	7/20/2023 12:47-13:32
Volumetric Flow	, Actual	acfm	176,756	Flow Time(s)
Corrected Flow,		scfm	78,537	12:11-13:10
Corrected Flow,	Dry	dscfm	61,875	12.11-13.10
Pollutant Emiss	sions		TGOC	
Molecular Weigh	t	g/g-mol	44.1	
	(dry)	ppmv	1.1	
Concentration	(wet)	ppmv	0.9	
Concentration	(dry)	lb/dscf	1.30E-7	
	(wet)	lb/scf	1.02E-7	
Emission Rate		lb/hr	0.482	
	Run Il	D: 1-1-3		Location: Kiln #1
Flow Rate		Flow Tra	in ID 1-1-3	Date Gas Time(s)
Gas Velocity		ft/min	2,133	7/20/2023 13:45-14:30
Volumetric Flow,	, Actual	acfm	173,133	Flow Time(s)
Corrected Flow,		scfm	73,204	13:44-14:37
Corrected Flow,	Dry	dscfm	57,232	13.44-14.37
Pollutant Emiss	sions		TGOC	
Molecular Weigh	1	g/g-mol	44.1	
	(dry)	ppmv	1.1	
Concentration	(wet)	ppmv	0.8	
	(dry)	lb/dscf	1.22E-7	
Furtheria D. I	(wet)	lb/scf	9.54E-8	
Emission Rate		lb/hr	0.419	l

ARSOURCE Filing: Received, Clerk's Office 03/15/2024 **Gaseous Emission Rates**

Project No.		4173	Project	Rain CII Inv. '23
	Run I	D: 1-1-1		Location: Kiln #1
Flow Rate		Flow Tra	in ID 1-1-1	Date Gas Time(s)
Gas Velocity		m/min	557	7/20/2023 09:45-10:30
Volumetric Flow,	, Actual	acm/min	4,204	Flow Time(s)
Corrected Flow,	Wet	scm/min	2,271	09:44-10:49
Corrected Flow,		dscm/min	2,138	05.11 10.15
Pollutant Emiss			TGOC	
Molecular Weigh	1	g/g-mol	44.1	
	(dry)	ppmv	4.6	
Concentration	(wet)	ppmv	4.4	
	(dry)	g/dscm	8.51E-3	
	(wet)	g/scm	8.01E-3	
Emission Rate		g/hr	1,091	
	Run I	D: 1-1-2		Location: Kiln #1
Flow Rate			in ID 1-1-2	Date Gas Time(s)
Gas Velocity		m/min	664	7/20/2023 12:47-13:32
Volumetric Flow	, Actual	acm/min	5,005	Flow Time(s)
Corrected Flow,		scm/min	2,224	
Corrected Flow,		dscm/min	1,752	12:11-13:10
Pollutant Emiss		í í	TGOC	
Molecular Weigh	ıt	g/g-mol	44.1	
	(dry)	ppmv	1.1	
Concentration	(wet)	ppmv	0.9	
Concentration	(dry)	g/dscm	2.08E-3	
	(wet)	g/scm	1.64E-3	
Emission Rate		g/hr	218	
	Run I	D: 1-1-3		Location: Kiln #1
Flow Rate		Flow Tra	in ID 1-1-3	Date Gas Time(s)
Gas Velocity		m/min	650	7/20/2023 13:45-14:30
Volumetric Flow	, Actual	acm/min	4,903	Flow Time(s)
Corrected Flow,	Wet	scm/min	2,073	12:44 14:27
Corrected Flow,	Dry	dscm/min	1,621	13:44-14:37
Pollutant Emiss			TGOC	
Molecular Weigh	it	g/g-mol	44.1	
	(dry)	ppmv	1.1	
Concentration	(wet)	ppmv	0.8	
Concentration	(dry)	g/dscm	1.96E-3	
	(wet)	g/scm	1.53E-3	
Emission Rate		g/hr	190	

Electronic Filing: Received, Clerk's Office 03/15/2024 Gaseous Emission Rates

Project No.		4173	Project	Rain CII Inv. '23
	Run Il	D: 1-1-4		Location: Kiln #1
Flow Rate		Flow Trai	n ID: 1-1-4	Date Gas Time(s)
Gas Velocity		ft/min	2,261	7/20/2023 16:46-17:31
Volumetric Flow,	Actual	acfm	183,552	Flow Time(s)
Corrected Flow,	Wet	scfm	72,282	16:15-17:17
Corrected Flow,	Dry	dscfm	58,725	10.15-17.17
Pollutant Emiss	sions		TGOC	
Molecular Weigh	t	g/g-mol	44.1	
	(dry)	ppmv	0.9	
Concentration	(wet)	ppmv	0.7	
Concentration	(dry)	lb/dscf	1.01E-7	
	(wet)	lb/scf	8.17E-8	
Emission Rate		lb/hr	0.4	
	Dum Ti	D: 1-1-5		Location: Kiln #1
	Kun I	D: 1-1-2		
Flow Rate		Flow Tra	in ID 1-1-5	Date Gas Time(s)
Gas Velocity		ft/min	2,392	7/20/2023 17:45-18:30
Volumetric Flow,	Actual	acfm	194,172	Flow Time(s)
Corrected Flow,	Corrected Flow, Wet		71,881	17:47-18:50
Corrected Flow,	Dry	dscfm	57,778	17.47-10.50
Pollutant Emiss	sions		TGOC	
Molecular Weigh	t	g/g-mol	44.1	
	(dry)	ppmv	0.9	
Concentration	(wet)	ppmv	0.7	
Concentration	(dry)	lb/dscf	9.89E-8	
	(wet)	lb/scf	7.95E-8	
Emission Rate		lb/hr	0.3	
				-

ARSOURCE Filing: Received, Clerk's Office 03/15/2024 **Gaseous Emission Rates**

Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet Corrected Flow, Dry Pollutant Emissions Molecular Weight (dry) (wet) (dry) (wet) (dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	D: 1-1-4 Flow Tra m/min acm/min scm/min dscm/min dscm/min g/g-mol ppmv ppmv g/dscm g/scm g/scm g/hr	in ID 1-1-4 689 5,198 2,047 1,663 TGOC 44.1 0.9 0.7 1.61E-3 1.31E-3 161	Date Gas Time(s) 7/20/2023 16:46-17:31 Flow Time(s) 16:15-17:17
Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet Corrected Flow, Dry Pollutant Emissions Molecular Weight Concentration (dry) (wet) (dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	m/min acm/min scm/min dscm/min g/g-mol ppmv ppmv g/dscm g/scm	689 5,198 2,047 1,663 TGOC 44.1 0.9 0.7 1.61E-3 1.31E-3	7/20/2023 16:46-17:31 Flow Time(s)
Volumetric Flow, Actual Corrected Flow, Wet Corrected Flow, Dry Pollutant Emissions Molecular Weight Concentration (dry) (wet) (dry) (wet) (dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	acm/min scm/min dscm/min g/g-mol ppmv ppmv g/dscm g/scm	5,198 2,047 1,663 TGOC 44.1 0.9 0.7 1.61E-3 1.31E-3	Flow Time(s)
Corrected Flow, Wet Corrected Flow, Dry Pollutant Emissions Molecular Weight Concentration (dry) (wet) (dry) (wet) (dry) (wet) Emission Rate Emission Rate Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	scm/min dscm/min g/g-mol ppmv ppmv g/dscm g/scm	2,047 1,663 TGOC 44.1 0.9 0.7 1.61E-3 1.31E-3	
Corrected Flow, Dry Pollutant Emissions Molecular Weight Concentration (dry) (wet) (dry) (wet) Emission Rate Emission Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	dscm/min g/g-mol ppmv ppmv g/dscm g/scm	1,663 TGOC 44.1 0.9 0.7 1.61E-3 1.31E-3	16:15-17:17
Pollutant Emissions Molecular Weight Concentration (dry) (wet) (dry) (wet) Emission Rate Emission Rate Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	g/g-mol ppmv ppmv g/dscm g/scm	TGOC 44.1 0.9 0.7 1.61E-3 1.31E-3	
Molecular Weight Concentration (dry) (wet) (dry) (wet) Emission Rate Emission Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	ppmv ppmv g/dscm g/scm	44.1 0.9 0.7 1.61E-3 1.31E-3	
Concentration (dry) (wet) (dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	ppmv ppmv g/dscm g/scm	0.9 0.7 1.61E-3 1.31E-3	
Concentration (wet) (dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	ppmv g/dscm g/scm	0.7 1.61E-3 1.31E-3	
Concentration (dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	g/dscm g/scm	1.61E-3 1.31E-3	
(dry) (wet) Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	g/scm	1.31E-3	
Emission Rate Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	<u>.</u>		
Run I Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	g/hr	161	
Flow Rate Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet			J
Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	D: 1-1-5		Location: Kiln #1
Gas Velocity Volumetric Flow, Actual Corrected Flow, Wet	Flow Tra	in ID 1-1-5	Date Gas Time(s)
Corrected Flow, Wet	m/min	729	7/20/2023 17:45-18:30
Corrected Flow, Wet	acm/min	5,498	Flow Time(s)
Connected Flows Drag	scm/min	2,035	
Corrected Flow, Dry	dscm/min	1,636	17:47-18:50
Pollutant Emissions		TGOC	· · · · · · · · · · · · · · · · · · ·
Molecular Weight	g/g-mol	44.1	
(dry)	ppmv	0.9	
Concentration (wet)	ppmv	0.7	
(dry)		1.58E-3	
(wet)	g/dscm	1.502.5	
Emission Rate	· · ·	1.27E-3	

APPENDIX C

FIELD DATA
Appendix C-1 Particulate Data

Traverse Point Layout

in. in.

do

Project	Rain	Location	K-1 Stack
Project Number	4173	Method	EPA Method 1
Test Date	July 20, 2023	Runs	NA

Stack or Duct Dimensions				Port Location From Nearest Flow	Disturba	nce
Internal Diameter supplied by facility	10 ft	2	in.	Distance Upstream (A)	18	ft
No Applicable Measurements*	ft		in.	Distance Downstream (B)	98	ft
Port A Length**	1 ft	6	in.	Diameters Upstream	1.77	
Internal ID supplied by facility*	10 ft	2	in.	Diameters Downstream	9.64	7
No Applicable Measurements*	ft		in.			Α
Port B Length**	1 ft	6	in.	Number of Traverse Points		
Internal ID supplied by facility*	10 ft	2	in.	Minimum for Particulate Traverses	12	
Port C Length**	1 ft	6	in.	Minimum for Velocity Traverses	12	В
Port D Length**	1 ft	6	in.	Number of Traverse Points Used	12	
Equivalent ID supplied by facility	10 ft	2	in.	Number of Test Ports Used	4	
Cross-Sectional Area	81.180 ft ²			Traverse Points Per Test Port	3	7

* Distance as measured. Not determined when internal diameter (ID) supplied by the facility is used.

** Actual port length or distance from outside reference point to inside wall, as measured.

Point No.	Percent of ID from inside wall to traverse	Distance from inside wall to traverse	from inside wall to traverse	from inside wall to traverse	from inside wall to traverse	from inside wall to traverse	point to tra	verse point,		Distance from reference point to traverse point, in.				Percent of ID from inside wall to traverse	Distance from inside wall to traverse	Distance fro point to tra ii		
Port A	point	point, in.	Decimal	Fract	ional		Port B point		point, in.	Decimal	Fract	ional						
1	4.4%	5.31	23.31	23	5/16		1	4.4%	5.31	23.31	23	5/16						
2	14.6%	17.87	35.87	35	7/8		2	14.6%	17.87	35.87	35	7/8						
3	29.6%	36.10	54.10	54	1/8		3	29.6%	36.10	54.10	54	1/8						
Port C							Port D											
1	4.4%	5.31	23.31	23	5/16		1	4.4%	5.31	23.31	23	5/16						
2	14.6%	17.87	35.87	35	7/8		2	14.6%	17.87	35.87	35	7/8						
3	29.6%	36.10	54.10	54	1/8		3	29.6%	36.10	54.10	54	1/8						

TECHNOLOGIES, INC.

Project #	4173	Date	7.20.23
Project	Ruin Carbon III.	Method [EPA Methods 1 and 2
Location	Kin I	Run Time	08:43-08:57
Performed by	D. Hote	Run #	Cyclenics

Equipment	Г	Run Parameters		
Probe ID 5-5		Barometer Reading	in. Hg	
Pitot ID 5-2		Test Port Elevation		125'
Pitot Coefficient 0-84		Stack Diameter	in.	122"
Thermocouple ID		Static Pressure	in. H ₂ O	
Temp. Meter ID	~	Moisture		
Diff. Press. Gauge ID	-	CO ₂ Concentration		
Barometer ID	~	O ₂ Concentration		
		Final Pitot Leak Check	Pass/Fail	PASS

Traverse Point	Δp (in. H ₂ O)	Stack Temp (°F)	Rotation Angle (°)	Traverse Point	Δp (in. H₂O)	Stack Temp (°F)	Rotation Angle (°)	Traverse Point	Δp (in. H₂O)	Stack Temp (°F)	Rotation Angle (°)
AI			8.3								
_ Z			6.1								· · · · ·
3			2.0								
15(7.7								
7			5.2	<u>.</u>							
7			4.0								
a			9.3								
_ 2			6.7								
3			6.0								
זע			8.0								
2			<u> </u>								
3			9.0 4.6								·

Electronik fin Dataceired, Stable affice Condensible Particulate N. ter

Run In	formation	I	Equipme	nt		R	un Para	meters	
Project #	4173	Pro	be ID	5-5			Train ID	M5202-2	
Project	Rain CII LLC	Line	r Type	Q		FPM Filter 1	D/TC ID	F23-17-1	
Location	K-1 Stack	Pi	tot ID	55-2		CPM Filter TC II			
Date	7/20/23	Pitot Coef	ficient	,84		Barometer Reading		29.40	/
Run #	611	Thermocou	ple ID	68.3		Meter Box E	levation	0	
Method EF	PA Methods 5 and 202					Test Port E	levation	125	
		Oven B	Box ID						
	. *	Umbili	cal ID	0-200-1		Stack D	iameter	122"	
Assumed	Conditions	Barome	ter ID	B24		Static F	Pressure		
Percent H ₂	20 <i>[</i> 0					Mi	in/Point	4	
Percent	02 10	Palmi	top ID	3					
Percent C	O_2 / O	Meter B	Box ID			Ñ	ozzle ID	Q-213	
Average Δ	p.05	DGM Correcti	ion (Y)	1.015	1	Noz	zie Type		
Stack Tem	p 500	Orifice Meter	r ΔH@	1.900		Nozzle D	iameter	+40,	/3
Pitot	Initial (>3" H ₂ O)	915							
Leak	Final (>3" H ₂ O)	1020							
Checks	Pass/Fail								
Initial	Time (24 hour)	920				T			
Sample Train	Vacuum (in Hg)	>15	>15	>	15	>15	>15	5 >15	
Leak Check	Leak Rate (CFM)	.005							
Final	Time (24 hour)	1020							
Sample Train	Vacuum (in. Hg)	18"							
Leak Check	Leak Rate (CFM)	.004							

Comments

Equipment Problems/Changes/Notes

Performed By:

K. McKenna

Reviewed By: JK 8/1/23

Eladaversangataceified, crable and condensible Particulate Miter

Pn	oject #:	4173	Project:	Rain CII	LLC	·· -		Location:	K-1 Stack			Run #:	111	
Traverse Point	Clock Time (24-hr)	Sampling Time (mìn)	er Temp F) Outlet	Stack Temp (°F)	Δp (in. H ₂ O)	(in.	H H₂O) Actual		er Reading t ³) Actual	Pump Vac. (in. Hg)	Probe Temp (°F)	FPM Temp (°F)	CPM Temp (°F)	Impinge Temp (°F)
START /	944					Pesned	- Accuul	Desired	669.700					
		4	18	412	.10	1.96	2.0.	672.74		16	252	251	77	65
2		8	 80.			2.92		676.45		14	250	250	73	62
3		12	82.	437 -	.17	3.27			680.20	16	252	251	72	62
B1		16	83-	444 -	10.	191	190-	108340	683.30	10	250	251	73	63
2		20	84.	481 -					686.90		250	251		63
3		24	85	507					690.75		251	252		62
C1 .		28	86	501 -	.13 -	2.35	2.40	1094.17	694.20	13	250	249	74	63
2	-	32	86-	531				698.05		15	249	253	- E	64
3		36		540-	20			702.12	102.00	15	253	250	76	64
D1		40	86.	530	.12	2.10	2.10	105,29	105.25	15	250	251	77	63
2		44	88 -					109.41		16	250	250	78	64
3		48	88	575-				713.71	713.00	16	251	253	78	64
	The star)	Gil				1 20							
-4	1049		 84	496 -	,156		2.89							
														<u> </u>
								· · · ·						
								: 						
		ll					1	L	I		XX 8 7	7/12		1

ARSOURCE Filing: Realizerk Silterable 15/2000 Condensible **Particulate Matter**

 $\left(\right)$

\bigcirc	Project #	4173			Project			,	
		Train ID			M5/202-	2			
	Box ID	33					Hook-Up ID	21	
			Date Time Analyst 1000 g Cal. V	Vt.	7/17/2 17:42 Lotoppe 1000.0		7.20.23 13:04 T.9:4mn 2000.0		
	Impinger	Туре	Charge		Initial V	Vt.	Final Wt.	Difference	
	1	Cond/KO Catch	Dry (w/Condens	ser)	642.0	1	672.5		
	2	MGBS	Dry	,	465.	3	465.3		
	-		CPM Filter H	olde	and Filter			199	
;93.0	3	MGBS	100 mL H ₂ O)	707.	0 <u>24</u>	695.2		
	Silica Gel	MGBS	_~ 200 g Silica (Gel	714.	2	739.2		
							Total		
	Run ID	ti (FPM Filter ID	FZS	3-7-1	Op	tional CPM Filter ID	NA	
}.							·· · · · ·	_	
./	FP	M Filter Conditi	on		Sample Identification				
		<u></u>		- Run No 010					
	Color: B	ack		FP	M Filter: 🚿		Proj. No	- Run No 011	
	Loading:	Heavy		Im	oinger Catch	n/Aq F	Rinses: Proj. No	- Run No 012	
	Recovered	By: A. VanSichtle	-		ganic Rinse	s:		- Run No 013	
				Filt	er CPM:		Proj, No	- Run No 014	
		M Filter Conditi	on						
	Intact? V		····			ent/l	Material Inform	nation	
		an/White		I	etone:		Fisher Lot Fisher Lot		
	Recovered	By: A. Vansid	Ye	<u> </u>	agent Wate xane:	31.1	Fisher Lot		
	Silica G	el Condition			M Filter:			·····	
	95				M Filter:				
	Comments:								
	· · · · · · · · · · · · · · · · · · ·				· · ·				
	1	Reviewed By:						1	

ARSOURCE ic Filipurge Data Cleb'a deinsi Bie Particulate Matter

Project	Rain CII LLC	Project # 4173
	Train ID7202- 72	
	Run Number ///	

Date	7/20/23
Analyst	T. Fitthin
H_2O added (mL)	122.0
Beginning Pressure (psi)	~ 2150

Purge Time (≥60 min)	Clock Time (24hr)	Flow (≥14 LPM)	Temp (65-85 ^o F)
0	11:45	14	<u> </u>
10	11:55	14	76.3
Z\;	12:05	IN F	74.4
30	12:15	1416	73.9
ЧО	12:25	L I	74.4
50	12:35	N.N.	75.1
w	12:45	14 5	75.0
		•	

Ending Pressure (psi) ~ いらうひ

Reagent/Material Information	
H ₂ O Lot No. :	
N ₂ Cylinder No. :	
Regulator ID No. :	
Rotometer ID No. :	

Comments:

Reviewed By:

Ż

Electroni Rain Datacei Fed, stable and Condensible Particulate M. ter

Run In	formation	E E	quipm	ent		R	un Para	meters M5-
Project #	4173	Pro	be ID	5.5	٦		Train ID	145200-
Project	Rain CII LLC	Liner	· Type	Q	-	FPM Filter	ID/TC ID	ST-SETT FJ.
Location	K-1 Stack	Pil	tot ID	55 2	1			CAF4 9
Date	7/20/23	Pitot Coeff	icient	. 84		Barometer		29.39
Run #	112	Thermocour	ple ID	68-3		Meter Box I	levation	0
Method E	PA Methods 5 and 202	·				Test Port I	levation	125
		Oven B	ox ID	/3	٦	•		ـــــــــــــــــــــــــــــــــــــ
		Umbilio	cal ID	1200-1		Stack I	Diameter	122"
Assumed	Conditions	Baromet	ter ID	13-24		Static	Pressure	·
Percent H	20 10					м	in/Point	4
Percent	02 16.75	Palmt	op ID	3				
Percent C	02 2.65	Meter B	ox ID	1		N	ozzle ID	6:242
Average A	p ,160	DGM Correction (Y) 1.015			/	Noz	Q	
Stack Tem	p 520	Orifice Meter	ΔH@	1.900		Nozzie [Diameter	-365
· · · · · · · · · · · · · · · · · · ·		·		· · · · · · · · · · · · · · · · · · ·				
Pitot	Initial (>3" H ₂ O)	1125						
Leak	Final (>3" H ₂ O)	1320				1		
Checks	Pass/Fail	PASS						
Initial	Time (24 hour)	1125	1149	4	•			
Sample Train	Vacuum (in Hg)	>15	>1		5	>15	>15	5 >15
Leak Check	Leak Rate (CFM)		٥.٥	03			1	
Final	Time (24 hour)		[32	0			1	
Sample Train	Vacuum (in. Hg)		17	74		1		

Comments

Equipment Problems/Changes/Notes

Performed By:

К. МсКеппа

Reviewed By: AL 8/7/23

El Jaaverser Batacei Fed, Cable and Condensible Particulate M ter

	oject #:	4173		Project:	Rain CII				Location:	K-1 Stack			Run #:	112	2
Fraverse Point	Clock Time (24 hr)	Sampling Time (min)		ter Temp PF) Outlet	Stack Temp (°F)	Δp (in. H ₂ O)		H H₂O) Actual		er Reading t ³) Actual	Pump Vac. (in. Hg)	Probe Temp (°F)	FPM Temp (°F)	CPM Temp (°F)	Imping Temp (°F)
START	1211						SHORE S	10.000		128.302	Zase des				
A1		4		86-	676-	.14.	1.13	1.10-	130.64		5	250	250	82	65
2		8		88-	688	,22	1.77		733.56		6		750	81	64
3		12		89	695_	.24 -	1.92	1.90	136.60		6	251	251	79	63
B1		16		87 -	648-	.12.	1.00	1.00-	738.79	138.80	5	250	251	79	64
2		20		89.	692-	.18-	1.44	1.40-	741.43	141.40	5	251	250	79	64
3		24		91 -	102.				744.22		6	250	250	18	64
C1		28		89-	612-	.13-	1.06	1.00-	146.48	146.50	5	250	248	80	64
2		32		91	103-	.16 -	1.28	1.30	748.97	748.95	6	258	250	77	63
3		36		91 -			1.35		151.53	151.50	6	34 9	251	77	63
D1		40		91 -	189.	.13 -	.97	1.00-	753.70	153.65	4	252	248	79	64
2		44		91 -	224	,20	1.57	1.60-	156.46	156.40	6	251	250	80	65
3		48		91 -	126.	,20-	1.56	1.40 .	759.21	759.15 ·	6	25 6	751	80	65
	1310			90	702	,172	· · ·	1.392							
-+															
							- -		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	1		
			3.					-	· · · · · · · · · · · · · · · · · · ·						
					-										
												·····			
	 											Å	K Ø [1]	12]

AIRSOUROF Filing: Ready Dataer Hile inable and Condensible **Particulate Matter**

Project #	4173]	Project	Rain CII	Inv. 123
	Train ID		M5/202-	2]
		l	11J/202	-	
Box ID	34		-	Hook-Up 1	D 22
		Date	7/17/2	3 7/21/23	
		Time	18:00		
			L. HOOP		10
]	1000 g Cal. V			
		Charge			Difference
1	Cond/KO Catch MGBS	Dry (w/Condens Dry	ser) 783.(549.		
-	11000	·	older and Filter		
3	MGBS	100 mL H ₂ O			
Silica Gel	MGBS	~ 200 g Silica (Gel 714.	9 744.4	
. *				Total	
Run ID	112	FPM Filter ID	Fzz-9-9	Optional CPM Filter	ID NA
		· · · · · · · · · · · · · · · · · · ·			
FP	M Filter Conditi	on	S	ample Identifica	ation
	ES		FH Rinses:	·····	lo Run No 01
	lack		FPM Filter:		lo Run No 01
	teavy		Impinger Catch	· · · · · · · · · · · · · · · · · · ·	lo Run No 01
Recovered	By: A. Vansichle		Organic Rinse Filter CPM:		lo Run No 01 lo Run No 01
СР	M Filter Conditi	ion	The crist.	110j.1	
Intact?	ES		Reage	ent/Material Inf	ormation
	hite	-	Acetone:	Fisher I	
Recovered	By: A.VanGickle		Reagent Wate	er: Fisher I	_ot
			Hexane:	Fisher I	_ot
	el Condition		FPM Filter:		
95	% Spent		CPM Filter:		
omments:					
omments:			••••••••••••••••••••••••••••••••••••••		
omments:			<u></u>		

()

ARSOURCEnic Filpergeodata Cettadefisible Particulate Matter

Project	Rain CII LLC	Project # 417
	Train ID M5/202- 3	
	Run Number 112]
	Date	7.20.23
	Analyst	- 8:thm-
-	H ₂ O added (mL)	116.4

Purge Time (≥60 min)	Clock Time (24hr)	Flow (<u>></u> 14 LPM)	Temp (65-85 ^o F)
0	13:55	14	741
1D	14:05	14	75.3
20	141.15	IM	74.1
30	14:25	14	73.5
40	14:35	14	73.6
50	<u>่ 14:45</u>	Y	73.9
60	14:55	<u>i</u> M	73.5

Ending Pressure (psi) ~ 100

Reagent/Material Information	
H ₂ O Lot No. :	
N ₂ Cylinder No. :	
Regulator ID No. :	
Rotometer ID No. :	

Comments:

Reviewed By:

Electron Ruin Datacei Fed, Mable and Condensible Particulate Matter

Run Inf	ormation	E	Equipn	ient			R	un Parar	neters
Project #	4173	Pro	be ID	5-3	5			Train ID	45202-1
Project	Rain CII LLC	Line	r Type	Q		FP	M Filter	ID/TC ID	1-9-10
Location	K-1 Stack	Pi	tot ID	55	.2		CPM Fi	lter TC ID	1
Date	7/20/23	Pitot Coef	ficient	.84		Ba	rometer	Reading	29.37
Run #	1/3	Thermocou	ple ID	68.		Me	ter Box I	Elevation	0
Method EP/	A Methods 5 and 202				!	Те	st Port I	Elevation	125
		Oven B	iox ID	/3		-			
		Umbili	cal ID	U-20	9-1		Stack	Diameter	122"
Assumed	Conditions	Barome	ter ID	B·	24		Static	Pressure	
Percent H ₂	0 10						м	lin/Point	4
Percent O	2 15.90	Palmt	op ID	3	3			· .	
Percent CO	2 3,30	Meter B	ox ID	[Ν	lozzle ID	Q234
Average Δp	,172	DGM Correcti	on (Y)	1.01	5 /		Noz	zzle Type	Q
Stack Temp	740	Orifice Meter	r ΔH@	1.90	0		Nozzie	Diameter	. 376
Pitot		1.2.70	I			Т			· · · · · · · · · · · · · · · · · · ·
	Initial $(>3^{"}H_2O)$	13:37				_			
Leak	Final (>3" H ₂ O)	1440				_			
Checks	Pass/Fail	PASS							
Initial	Time (24 hour)	13:37							
Sample Train	Vacuum (in Hg)	>15	>	15	>15		>15	>15	>15
Leak Check	Leak Rate (CFM)	0.004							
Final	Time (24 hour)	1440							i
Sample Train	Vacuum (in. Hg)	18"							
Leak Check	Leak Rate (CFM)	.003						1	

Comments

Equipment Problems/Changes/Notes

Performed By:

K. McKenna

......

Reviewed By: 🔏 173

787.4

Elanaverse gataceifed, grable and Condensible Particulate Miter

Pr	oject #:	4173		Project:	Rain CII	LLC			Location:	K-1 Stack			Run #:	11	3
Traverse Point	Clock Time (24 hr)	Sampling Time (min)		ter Temp PF) Outlet	Stack Temp (°F)	Δp (in. H ₂ O)	(in.	\H H₂O) Actual		er Reading t ³) Actual	Pump Vac. (in. Hg)	Probe Temp (°F)	FPM Temp (°F)	CPM Temp (°F)	Imping Temp (°F)
START	1344									159.510					
A1		4		87-	740-	12.	1.03	1.00-	761.25	761.70	8	253	250	80	65
2		8		88-	756	,20-	1.70	1.70.	764.61	764.60	8	251	252	80	65
3		12		88.	761 -	.22-	1.87	1.90.	767.61	747.55	10	250	250	80	64
B1		16		89	746	,/3.	1.12	1.10	769.94	769.90	10	251	249	78	64
2		20		89.	761	,15-		1	272.43		10	250	258	78	63
3		24		90.	764			-	175.07		9	250	253	78	63
C1		28		90-	753-	.08-	.69	.10.	176.90	176.80	6	250	75 0	80	64
2		32		90 -	156	.14 -			179.31		7	249	253	80	64
3		36		90.	178	.16	1.34	1.30-	781.86	181.75	9	250	250	81	65
D1		40		89-	158	,15-	1.28	1,30	184.35	184.30	9	250	350	81	65
2		44		91	188			1-		187.40 v	9	250	249	81	63
3		-48	//		- eng		1								
	1437)					the h	EAHE	1.35							
	1951		TER	OAJie	2. 160	,157		1.93							
								-							
									:		<u> </u>				
													8/1/2-	>	

SOURCE Filing: Really Dataerk Filteral Ble 15/20 Condensible **Particulate Matter**

-	Project #	4173			Project [
		Train ID			M5/202-]
	Box ID	32					Hook-Up ID	20
			Date		7/17/2	3	7/21/23	
			Time		17:15		14:45	
			Analyst		L. HOOPE	R-	A.VanSichla	
			1000 g Cal.	Wt.	0.000/		1000.1	
	Impinger	Туре	Charge		Initial W	Vt.	Final Wt.	Difference
	1	Cond/KO Catch	Dry (w/Conde	nser)	647.9		778.5	
	2	MGBS	Dry		511.8		517.0	
	-				er and Filter			
	3	MGBS	100 mL H ₂		637.1		643.z	
	Silica Gel	MGBS	~ 200 g Silica	a Gel	834.5	5	856.Z	
							Total	
	Run ID	113	FPM Filter ID	FZ	2-9-10	Opti	onal CPM Filter ID	NA
r-	ED	M Filter Conditi	on		6	mal	e Identificatio	
	Intact? VE			F	I Rinses:	ampr		- Run No 010
		lack			M Filter:			- Run No 011
		HEANY			-	/Aa Ri	inses: Proj. No.	
		By: A. Vansichle			ganic Rinse			- Run No 013
					ter CPM:			- Run No 014
		M Filter Conditi	on					
	Intact? 🏒				D		laterial Infor	

Color: White Recovered By: A. Vm Sickle

Silica Gel Condition % Spent 90

Reagent/M	aterial Information
Acetone:	Fisher Lot
Reagent Water:	Fisher Lot
Hexane:	Fisher Lot
FPM Filter:	
CPM Filter:	

Comments:

- (**)-**

()

Reviewed By:

AIRSOURCEnic Filpergeodata Cethindefisible Particulate Matter

	Train ID	M5/202- \]	
	Run Number	113]		
r	Date		7,20,2		
	Analyst		7,20,2		
	H ₂ O added (105.6		
	Beginning Press	sure (psi)	NILOU		
	Purge Time	Clock Time	Flow	Temp	
	(<u>></u> 60 min)	(24hr)	(<u>>14 LPM)</u>	(65-85 ºF)	
	0	15:05	IY	76.8	
	10 25	15:15	<u> </u>	76.2	
	30	15:25		74,7	
	40	15 45	IM	74.9	
	50	15:55	M	76.0	
	60	16:05	<u> </u>	76.0	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	Ending Pressu	re (psi)	~600		
	Reage	nt/Material	Information		
	H ₂ O Lot No. :				
	N ₂ Cylinder No. :	· · · · · · · · · · · · · · · · · · ·			
	Regulator ID No. :				
	Rotometer ID No. :				
omments:					
	······		-		

 $\langle \rangle$

Electron Ruin Datacei Fed, Mable and Condensible Particulate N ter

Run Int	formation	1	Equipn	nent		R	un Para	meters
Project #	4173	Pro	obe ID	5-2	5		Train ID	M5202-4
Project	Rain CII LLC	Line	r Type	R		FPM Filter	ID/TC ID	F22-7-2
Location	K-1 Stack	Pi	itot ID	55-0	2		ter TC ID	3
Date	1/20/23	Pitot Coef	ficient	. 84		Barometer	Reading	29.31
Run #	114	Thermocou	ple ID	68.		Meter Box	levation	0
Method EP	A Methods 5 and 202					Test Port F	levation	125
		Oven I	Box ID	13				:
		Umbili	ical ID	0-200	-1	Stack I	Diameter	122"
	Conditions	Barome	ter ID	вг	4	Static	Pressure	
Percent H ₂				•	:	M	in/Point	4
Percent (- /	Palm	top ID	3			· .	
Percent CC	$D_2 = 3.4$	Meter E	Box ID	1		N	ozzle ID	0.264
Average Δ	p.160	DGM Correct	ion (Y)	1.0	5 /	Noz	zle Type	Q
Stack Tem	p 760	Orifice Mete	r ∆H @	1.90	6	Nozzle I	Diameter	. 388
· · ·					· · ·			
Pitot	Initial (>3" H ₂ O)	1614						
Leak	Final (>3" H ₂ O)	1720						
Checks	Pass/Fail	P#55						
Initial	Time (24 hour)	1614	1					
Sample Train	Vacuum (in Hg)	>15	>	15	>15	>15	>15	>15
Leak Check	Leak Rate (CFM)	,002					1	
Final	Time (24 hour)	1720				1		!
	Vacuum (in. Hg)	18"						
Sample Train	rvacuum (m. ny)		1					

Comments

Equipment Problems/Changes/Notes

Performed By:

K. McKenna

Reviewed By: de 8/11/23

Elataverse Dataceired, Itable and Condensible Particulate M ter

Pro	oject #:	4173	1	Project:	Rain CII	LLC			Location:	K-1 Stack	 		Run #:	M	4
Traverse Point	Clock Time (24 fir)	Sampling Time (min)		er Temp F) Outlet	Stack Temp (°F)	Δp (in. H ₂ O)	(in.	H H₂O) Actual		er Reading t ³) Actual	Pump Vac. (in. Hg)	Probe Temp (ºF)	FPM Temp (°F)	CPM Temp (°F)	Impinger Temp (°F)
START	1615			10 Sauces						187.750	de la				
A1 (<u> </u>	4		84-	814 -	./3_	1.19	1.20 -	790.14	190.10	7	250	249	80	65
2		8		84 .						193.30	8	250	250	80	45
3		12		87 -	845-			1	796.64	196.54	8	250	249	80	65
B1		16		86 -	813 -	,20 -	1-84	1.80-	799.61	199.60	8	250	249	19	65
2		20		88 -	845-	,05-		,50-	801.09		9	250	250	70	63
3		24		88 _	853-	,20,	-		.804.03	804.00	9	35 0	250	70	64
C1		28		89	835	.10 -	.91	.90-	806-13	806.10	9	250	250	70	65
2		32		89-	850-	.15 .	1.35		808.69		9	250	250	70	65
3		36		90 -	852.	. 81,	1.62	1.60-	8 U. 49	811.50	10	249	258	74	65
D1		40		90 -	861-	.14 ^	1.35	1.20	813.95	8/3.90	10	250	<u>351</u>	<i>15</i>	65
2		44			877-	,21	1.85				11	249	250	76	65
3		48		91	-881 -	.82	-1.94	1.90 -	820.01	820.01 .	[]]	25 0	250	77	66
	hit	2		88	847	,167		<u> .53</u> 3	: : : :						
									I						
							· · · · · · · · · · · · · · · · · · · ·		· · · · ·					· 	·
						-			:						

XL 8 7/23

AIRSOURGE Filing: Read/Dataerk Silterable1and2Condensible **Particulate Matter**

L	Project #	14173]		Project		
		Train ID			м5/202- Ц		
	Box ID	_35]		•	Hook-Up	ID 76
			Date Time Analyst 1000 g Cal.		7/17/23 8795 HOOPER 1000.0	7/21/2 17:45 - A.Varsich 1000.1	
	Impinger	Туре	Charge		Initial Wt.	Final W	. Difference
	1	Cond/KO Catch	Dry (w/Conde	enser) (048.5	798.0	
	2	MGBS	Dry	C	579.9	579.9	
			CPM Filter	Holder a	and Filter		
	3	MGBS	100 mL H ₂		91.8	689.1	
	Silica Gel	MGBS	~ 200 g Silica	a Gel 🕻	035.8	658.8	
						Total	
	Run ID	114	FPM Filter ID	F83	-7-Z (ptional CPM Filte	er ID NA
	FP	M Filter Conditi	on		Sam	ple Identific	ation
	Intact?	ES		FH R	inses:		No Run No 010
		lack		FPM	Filter:	Proj.	No Run No 011
		teary			nger Catch/Ad		No Run No 012
	Recovered	By: A. VanSichle			nic Rinses:	-	No Run No 013
	CP	M Filter Conditi	ion	Flite	CPM:	Proj.	No Run No 014
		ES			Reagent	/Material In	formation
	Color: W	hite	· · · · · · · · · · · · · · · · · · ·	Acet		Fisher	· · · · · · · · · · · · · · · · · · ·
		•			ent Water:	Fisher	Lot
		By: A. Van SideLe		Reag	fent water.		
	Recovered E	By: A. Van Sickle		Reac Hexa		Fisher	Lot
	Recovered E	By: A.VensideLe		Hexa FPM	ne: Filter:	Fisher	Lot
	Recovered E	By: A. Van Sickle		Hexa FPM	ine:	Fisher	Lot
<u> </u>	Recovered E	By: A.VensideLe		Hexa FPM	ne: Filter:	Fisher	Lot
C	Recovered E Silica Go 90	By: A.VensideLe		Hexa FPM	ne: Filter:	Fisher	Lot
C	Recovered E Silica Go 90	By: A.VensideLe		Hexa FPM	ne: Filter:	Fisher	

;)

 $\left(\begin{array}{c} \end{array} \right)$

ARSOURCE nic Filiperge Data Cleth deinsi Biel Particulate Matter

Project	Rain CII LLC		Proj	ect # 4173
	Train ID	M5/202- 시		
	Train ID Run Number	м5/202-Ч 11Ч		

Date	7,20,23
Analyst	T. Pithon
H ₂ O added (mL)	F.111
Beginning Pressure (psi)	~ 600

Purge Time (<u>></u> 60 min)	Clock Time (24hr)	Flow (<u>></u> 14 LPM)	Temp (65-85 ^o F)
0	17:42	M	79.6
10	17:5Z	14	79.4.
20	18:02	14	79.0
30	18:12	14	78.4
40	18:22	j M	78.Z
ςD	18:32	Х	200
60	18:42	14	[~] 78.1
		•	

Ending Pressure (psi) ~ (හර

	Reagent/Mater	ial Information
	H ₂ O Lot No. :	
N	2 Cylinder No. :	
Reg	gulator ID No. :	
Roto	ometer ID No. :	

.

Comments:

±)

Reviewed By:

ElectroniRumDataceired, glable and condensible Particulate N_ter

Run Inf	ormation	I	Equipn	nent		R	un Para	meters
Project #	4173	Pro	obe ID	5-5			Train ID	F22-10-24
Project	Rain CII LLC	Line	r Type	Q		FPM Filter	ID/TC ID	P22-10-24 M5-202-
Location	K-1 Stack	P	itot ID	55-2			ter TC ID	6
Date	7/20/23	Pitot Coef	ficient	. 84		Barometer	Reading	29.32
Run #	115	Thermocou	ple ID	68.3		Meter Box I	levation	0
Method EP	A Methods 5 and 202					Test Port i	levation	125
		Oven I	Box ID	/3				
		Umbili	ical ID	0-200-1		Stack I	Diameter	<u>1</u> 22"
Assumed	Conditions	Barome	ter ID	824		Static	Pressure	
Percent H ₂	1					M	in/Point	4
Percent O	- / - /	Palm	top ID	3		••••••		
Percent CO	3.4	Meter E	Box ID	/		N	lozzle ID	Q261
Average Δp	,160	DGM Correct	ion (Y)	1.013		Noz	zle Type	QULAZ
Stack Temp	850	Orifice Mete	r ∆H@	1.902)	Nozzle [Diameter	0.396
Pitot	Initial (>3" H ₂ O)	1142	1					
Leak	Final (>3" H ₂ O)	1854						
Checks	Pass/Fail	PASS						
Initial	Time (24 hour)	1742						
Sample Train	Vacuum (in Hg)	>15	>	15	>15	>15	>15	· >15
Leak Check	Leak Rate (CFM)	,001						
Final	Time (24 hour)	1854						
	Vacuum (in. Hg)	19"						
Sample Train								

Comments

Performed By:

K. McKenna

Equipment Problems/Changes/Notes

Reviewed By: JK 8/7/23

Elanaversengataceifid, grable and Condensible Particulate M ter

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	np Temp
A1 4 89. 886 $, 10$ 95 $, 10$ 833.35 833.35 7 249 249 249 876 2 8 90 909 $, 17$ 1.78 20 826.28 826.20 7 253 253 873 3 $/2$ 91 909 $, 13$ 2.12 826.28 826.20 7 253 253 873 3 $/2$ 91 930 233 2.12 822.49 839.35 8 250 249 8 81 $/16$ $9/1$ 931 1.13 1.10° 831.83 831.70 9 257 875 2 90 93 934 $.15^{\circ}$ $.39$ 1.40° 837.43 837.35 10° 350° $350^$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63
B1 //b $9/-901$ $./3 - 1.13$ $1.10^ 831.83$ 831.70 9 257 352 8.6 2 20 92 92 92 $92^ 924^ ./5 - 1.39$ $1.40^ 834.44^ 834.35^ 10^ 250^ 257^ 8.7^-$ 3 24^+ $92^ 92^+$ $75^ 1.84^ 1.80^ 837.43^ 837.35^ 10^ 250^ 257^ 8.7^-$ 3 24^+ $92^ 72^ 84^+$ $1.80^ 837.43^ 837.70^ 10^ 250^ 250^ 8.7^-$ C1 $28^ 92^ 72^ 11^ 1.60^ 839.76^ 10^ 250^ 250^ 825^ 825^ 839.70^ 10^ 255^ 250^ 825^ 825^ 839.70^ 10^ 250^ 250^ 825^ 839.70^ 10^ 250^ 250^ 250^ 250^ 250^ 250^ 250^ 250^ 250^-$ <t< td=""><td></td></t<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2/4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 63
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 63
2 44 94 970 ,25 226 851.43 851.30 12 249 248 7 3 48 94 982 .26 2.32 2.30 854.79 854.60 13 250 250 70	62
2 44 94 970 ,25 220 851.43 851.30 12 249 248 7 3 48 94 982 .26 2.32 2.30 854.79 854.60 13 250 250 70	63
3 48 94 982 .26 2.32 2.30 854.79 854.60 1.3 250 250 70	
	6 67
1850 92 931 ,175 1.650	

SL 8/1/23

AIRSOUROE Filing: Reab Daterk Filterable 15/2000 densible **Particulate Matter**

	Project #	4173		Project		
		Train ID		M5/202- (0	
	Box ID	41			Hook-Up ID	29
			Date Time		3 7/21/23]
			Analyst	19:20	17:50 N- A.VanSichle	-
			1000 g Cal. V	L. HOO PE Vt. [000.0	1000.1	
	Impinger	Туре	Charge	Initial W	/t. Final Wt.	Difference
	1	Cond/KO Catch	Dry (w/Condens		922.2	
	2	MGBS	Dry	605.9	606.8	
	- 3	MCDC		older and Filter		
	Silica Gel	MGBS MGBS	100 mL H ₂ O ~ 200 g Silica (605.4 764,8	
	Shied Ger	Hidb5	200 g Billea G		Total	
,						
	Run ID	115	FPM Filter ID	FZZ-10-24	Optional CPM Filter ID	NA
			<u>.</u>			
	FP	M Filter Conditi	on	Sa	ample Identificati	on
		Es .		FH Rinses:		- Run No 01
		nck.		FPM Filter:	· · · ·	- Run No 01
	Loading: H				/Aq Rinses: Proj. No.	
	Recovered	By: A. Van Sidele		Organic Rinse	s: Proj. No.	- Run No 01
				Filtor CDM	Droj No	- Pup No 01.
	СР	M Filter Conditi	on	Filter CPM:	Proj. No.	- Run No 01
	CP Intact? YE	M Filter Conditi	on		Proj. No. nt/Material Infor	
		S	on			mation
	Intact? YE Color: Wh	S		Reage	nt/Material Infor Fisher Lot r: Fisher Lot	mation
	Intact? YE Color: Wh Recovered I	is ite 3y: A. Van Sickle		Reage Acetone: Reagent Wate Hexane:	nt/Material Infor Fisher Lot	mation
	Intact? YE Color: Wh Recovered I Silica Ge	is ite By: A Van Sickle el Condition		Reage Acetone: Reagent Wate Hexane: FPM Filter:	nt/Material Infor Fisher Lot r: Fisher Lot	mation
	Intact? YE Color: Wh Recovered I Silica Ge	is ite By: A Van Sickle el Condition		Reage Acetone: Reagent Wate Hexane:	nt/Material Infor Fisher Lot r: Fisher Lot	mation
	Intact? YE Color: Wh Recovered I Silica G Silica G	S He By: A Van Sickle El Condition % Spent		Reage Acetone: Reagent Wate Hexane: FPM Filter:	nt/Material Infor Fisher Lot r: Fisher Lot	mation
	Intact? YE Color: Wh Recovered I Silica G Silica G	is ite By: A Van Sickle el Condition		Reage Acetone: Reagent Wate Hexane: FPM Filter:	nt/Material Infor Fisher Lot r: Fisher Lot	mation
	Intact? YE Color: Wh Recovered I Silica G Silica G	S He By: A Van Sickle El Condition % Spent		Reage Acetone: Reagent Wate Hexane: FPM Filter:	nt/Material Infor Fisher Lot r: Fisher Lot	

()

ß

ARSOURCE nic Filipurger Data Cleth definsible Particulate Matter

Project	Rain CII LLC	Project # 4173
	Train ID M5/202-5 Run Number 115	

Date	7.20,73
Analyst	T. P. Hrm
H_2O added (mL)	120.7
Beginning Pressure (psi)	~2100

Purge Time (<u>></u> 60 min)	Clock Time (24hr)	Flow (<u>></u> 14 LPM)	Temp (65-85 °F)
0	19:07	14	-19.0
60	19:17	14	79.3
20	19:27	ر ح	79.4
જ	19:37	í S	79.8
40	19:47	I J	79.8
50	14:57	14	80+0
<u> 60</u>	20:07	M	811

Ending Pressure (psi) ~いうの

Reagent/Material Information	
H ₂ O Lot No. :	
N ₂ Cylinder No. :	
Regulator ID No. :	
Rotometer ID No. :	

Comments:

()

Reviewed By:

Appendix C-2

Analyzer Data Log

TIER 5 LABS 5353 W. SOUTHERN AVE. INDIANAPOLIS, IN 46241 317-536-5590

Product:	Nitrogen CEM	Minimum Purity:	99.9995%
		Certification Date:	22 October 2021
Mixture Grade:	5.5	Issuance Date:	22 October 2021
		Expiration Date:	22 October 2029
Cylinder Fill Pressure:	2015 PSIG	Lot Number:	S29513A9

Purity Specification							
Analyte	Specification	Concentration	Assay Dates				
Total Hydrocarbons	< 0.05 PPM	< 0.05 PPM	10/22/2021				
Carbon Monoxide	< 1 PPM	< 1 PPM	10/22/2021				
Carbon Dioxide	< 10 PPM	< 10 PPM	10/22/2021				
Oxygen	< 2 PPM	= 0.53 PPM	10/22/2021				
Total NOx	< 0.02 PPM	< 0.02 PPM	10/22/2021				
Nitrous Oxide	< 0.02 PPM	< 0.02 PPM	10/22/2021				
Moisture	< 2 PPM	= 0.81 PPM					

	Cylinders in Lot	
CC458715	CC84077	EB0048027
CC478929	EB0004527	CC81798
EB0053738	CC362797	CC94875
CC517259	CC514172	EB0132154
CC516345	CC480389	CC455093
CC479020	CC462284	CC722220
CC300260	EB0132125	CC479431
EB0053746	CC454521	EB0051888
	CC480390	

40 CFR1065.750 Compliant

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025-2005

the Haas

Analytical Chemist: Christopher Haas

Production Manager: Eric Frymier

Production Laboratory: Tier 5 Labs, LLC 5353W. Southern Ave, Indianapolis, IN 46241 PGVP Vendor ID R12021

Airgas Specialty Gases Airgas USA, LLC Electronic Filing: Received, Clerk's Office 03/15/2024S. Wentworth Ave. Chicago, IL 60628 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E03NI73E15A1FW8 CC414201 124 - Chicago (SAP) - IL B12018 CO2,O2,BALN Reference Number:54Cylinder Volume:14Cylinder Pressure:20Valve Outlet:59Certification Date:00

54-401323400-1 149.6 CF 2015 PSIG 590 Oct 15, 2018

Expiration Date: Oct 15, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS									
Component		Requested Concentration	Actual Protocol Concentration Method		Total Relative Uncertainty	Assay Dates			
CARBON I	DIOXIDE	6.000 %	5.860 %	G1	+/- 1% NIST Traceable	10/15/2018			
OXYGEN		21.00 %	21.00 %	G1	+/- 1% NIST Traceable	10/15/2018			
NITROGE	N	Balance	-						
CALIBRATION STANDARDS									
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date			
NTRM	13060414	CC413576	7.489 % CARBON DI	OXIDE/NITROGEN	+/- 0.6%	Jan 14, 2019			
NTRM	15010409	K013750	22.454 % OXYGEN/N	NITROGEN	+/- 0.2%	Aug 05, 2021			
ANALYTICAL EQUIPMENT									
Instrume	nt/Make/Mod	el	Analytical Princ	•	Last Multipoint Calil	bration			
CO2-1 HO	RIBA VIA-510 \	/1E3H7P5	NDIR		Oct 12, 2018				
02-1 HOR	IBA MPA-510 3	VUYL9NR	Paramagnetic		Sep 17, 2018				

Triad Data Available Upon Request

Certificate of Analysis – EPA Protocol Gas

Customer: American Welding & Ga E Frontage Road Grandview, MO 64030	S				PO Number: Reference#: Date Filled: Customer Part #:	438794 CGS-10-24195 7/20/2022 CSG E840001-A	1-1 J20	
Serial Number 216803160		Size ALS	Concentrati Mole	1.1.1 1.1.1.1.	Standard type EPA Protocol	Certificate ID 05-07282201		
			Certified	l Concenti	ration			
Carbon Dioxide = Oxygen = Nitrogen =	12.36% 12.11% Balance Ga	+/- 0.06% +/- 0.05% as						
			Analytic	al Informa	tion			
Component Carbon Dioxide Oxygen		Analyzer Make/Model/SN Thermo Nicolet 6700 APW1001 Servomex 5200 12730			Analytical Principle FT-IR Paramagnetic	le Last Calibration Date 7/6/2022 7/18/2022		tion Date
Assay Date	7/28/2022							
			Reference	ce Standa	rd(s)			
Component Carbon Dioxide Oxygen Nitrogen		GMIS # 10-15142-5-2 10-4838-2		Cylinder # EB0005338 CC300673		Concentration 16.23% 14.90% Balance Gas	Uncertainty +/- 0.12% +/- 0.04%	Expiration Date 8/31/2026 5/5/2028
CO2 GMIS certified by: Component Carbon Dioxide Nitrogen	SRM # 2745	N.I.S.T. Samj 9-D-10	ole #	Cylinder # FF13635		Concentration 16.080% Balance Gas	Uncertainty +/- 0.020%	Expiration Date 4/8/2021
D2 GMIS certified by: Component Dxygen Nitrogen	SRM # 2659a	N.I.S.T. Samı 71-D-35	ole #	Cylinder # CAL015756		Concentration 20.720% Balance Gas	Uncertainty +/- 0.043%	Expiration Date 8/23/2021

This calibration standard has been certified per the 2012 EPA Traceability Protocol, Document EPA 600/R-12/531, using the procedure G1.

Do Not Use This Standard Below 100 psig (0.7 Megapascals).

2000

7/28/2022

8 years 7/28/2030

Valve Outlet Connection CGA: 590 Mix Pressure(psig)@70F : Certification Date: Shelf Life : Expiration date:

Certified By

Reviewed By: Derek Hindman

Produced By: Coastal Specialty Gas: (409) 981-7700 2150 Interstate 10 East, Beaumont, TX 77703 Coastal Specialty Gas PGVP Vendor ID: 012022

Certificate of Analysis - EPA Protocol Gas

Customer: American Welding & Ga 5353 W Southern Ave Indianapolis, IN 46241	s			PO Number: Reference#: Date Filled: Customer Part #:	394546 CGS-10-22568 9/8/2021 P6MB001-A1-1			
Cylinder Number CC463386		Size ALS	Concentration Basis Mole	Standard type EPA Protocol	Certificate ID 03-04012201			
			Certified Concent	tration				
Carbon Monoxide = Nitric Oxide = NOx = Propane = Nitrogen =	6.20 ppm 6.77 ppm 6.88 ppm 8.40 ppm Balance Ga	+/- 0.07 ppm +/- 0.09 ppm +/- 0.08 ppm as	1					
			Analytical Inform	ation				
Component Carbon Monoxide Nitric Oxide Propane		Analyzer M a Thermo Thermo Thermo	ike/Model/SN Nicolet 6700 APW100179 Nicolet 6700 APW100179 Nicolet 6700 APW100179	FT-IR	le	Last Calibrat 3/23/2022 3/10/2022 3/11/2022	tion Date	
First Assay Date	3/25/2022				Second Assay D	Date	4/1/2022	
			Reference Standa	ard(s)				
Component Carbon Monoxide Nitric Oxide NOx Propane Nitrogen		GMIS # 10-18973 10-09-1402 10-09-1402 PRM	Cylinder # CC482690 ND52081 ND52081 D970450		Concentration 10.37 ppm 4.97 ppm 5.03 ppm 4.999 ppm Balance Gas	Uncertainty +/- 0.06 ppm +/- 0.04 ppm +/- 0.025 ppm	'n	Expiration Date 10/25/2027 11/22/2022 11/22/2022 9/14/2026
CO GMIS certified by: Component Carbon Monoxide Nitrogen	SRM # 1677c	N.I.S.T. Sam 5-J-16	ple # Cylinder # CAL015280		Concentration 9.825 ppm. Balance Gas	Uncertainty +/- 0.047 ppm		ı Date
NO GMIS certified by: Component Nitric Oxide Nitrogen Oxides (NOx) Nitrogen	PRM		Cylinder# APEX132430 APEX132430		Concentration 5.00 ppm 5.00 ppm Balance Gas	Uncertainty +/- 0.04 ppm +/- 0.04 ppm		n Date

This calibration standard has been certified per the 2012 EPA Traceability Protocol, Document EPA 600/R-12/531, using the procedure G1.

Do Not Use This Standard Below 100 psig (0.7 Megapascals).

Valve Outlet Connection CGA:	660
Mix Pressure(psig)@70F :	1500
Certification Date:	4/1/2022
Shelf Life	2 years
Expiration date	4/1/2024

Certified By: X

Produced By: Coastal Specialty Gas: (409) 981-7700 2150 Interstate 10 East, Beaumont, TX 77703

Coastal Specialty Gas PGVP Vendor ID: 012022

Reviewed By:

Jennifer Healy

Certificate of Analysis - EPA Protocol Gas

Customer: American Welding & Ga 5353 W Southem Ave Indianapolis, IN 46241	S				PO Number: Reference#: Date Filled: Customer Part #:	471431 CGS-10-25339 3/6/2023 : CSG E6MAB01		
Cylinder Number RR04942		Size ALS	Concentra Mol		Standard type EPA Protocol	Certificate ID 03-03212301		
Carbon Monoxide = Nitric Oxide = NOx = Sulfur Dioxide = Propane = Nitrogen =		+/- 0.14 ppm +/- 0.17 ppm +/- 0.16 ppm	Certifie	d Concent	tration			
			Analytic	al Informa	ation			
Component Carbon Monoxide Nitric Oxide Sulfur Dioxide Propane		Thermo Thermo	Nicolet iS50 Nicolet iS50 Nicolet iS50	AUP2210530 AUP2210530 AUP2210530 AUP2210530) FT-IR I FT-IR	le.	Last Calibrat 3/3/2023 3/10/2023 3/17/2023 3/9/2023	ion Date
First Assay Date	3/14/2023					Second Assay I	Date	3/21/2023
		1	Referen	ce Standa	rd(s)			
Component Carbon Monoxide Nitric Oxide NOx Sulfur Dioxide Propane Nitrogen		GMIS # 10-18973 01-142002 01-142002 5-08-1303 05-01-1701		Cylinder # CC474269 CC493943 CC493943 EB0025323 CC493803		Concentration 10.34 ppm 9.90 ppm 10.07 ppm 5.06 ppm 10.01 ppm Balance Gas	Uncertainty +/- 0.06 ppm +/- 0.10 ppm +/- 0.06 ppm +/- 0.03 ppm	Expiration Date 10/25/2027 3/10/2026 3/10/2026 2/3/2026 5/1/2025
CO GMIS certified by: Component Carbon Monoxide Nitrogen	SRM # 1677c	N.I.S.T. Sampl 5-J-16		Cylinder # CAL015280		Concentration 9.825 ppm Balance Gas	Uncertainty +/- 0.047 ppm	Expiration Date 6/24/2024
NO GMIS certified by: Component Nitric Oxide Nitrogen Oxides (NOx) Nitrogen	PRM			Cylinder # APEX1324311 APEX1324311		Concentration 10.00 ppm 10.00 ppm Balance Gas	Uncertainty +/- 0.05 ppm +/- 0.05 ppm	Expiration Date 9/12/2023 9/12/2023
SO2 GMIS certified by: Component Sulfur Dioxide Nitrogen	PRM			Cylinder # D887573		Concentration 5.00 ppm Balance Gas	Uncertainty +/- 0.06 ppm	Expiration Date 9/20/2022
Propane GMIS certified by: Component Propane Nitrogen	SRM # 1666b	N.I.S.T. Sample 84-K-21		Cylinder # FF10563		Concentration 9.888 ppm Balance Gas	Uncertainty +/- 0.032 ppm	Expiration Date 10/5/2019

This calibration standard has been certified per the 2012 EPA Traceability Protocol, Document EPA 600/R-12/531, using the procedure G1.

Do Not Use This Standard Below 100 psig (0.7 Megapascals).

 Valve Outlet Connection CGA:
 660

 Mix Pressure(psig)@70F:
 1900

 Certification Date:
 3/21/2023

 Shelf Life:
 2.years

 Expiration date:
 3/21/2025

Certified By 1

Produced By: Coastal Specialty Gas: (409) 981-7700 2150 Interstate 10 East, Beaumont, TX 77703 Coastal Specialty Gas PGVP Vendor ID: 012023

Reviewed By:

Certificate of Analysis – EPA Protocol Gas

Customer: American Welding & Gas 5353 W Southern Ave Indianapolis, IN 48241 Cylinder Number RR04905 Carbon Monoxide = Nitric Oxide = Nox = Sulfur Dioxide = Propane = Nitrogen =	25.01 ppm 25.86 ppm 25.91 ppm 30.22 ppm Balance Ga			on Basis	PO Number: Reference#: Date Filled: Customer Part #: Standard type EPA Protocol	471203 CGS-10-25338 3/2/2023 CSG E4MAB01-A Certificate ID 03-03182301		
			Analytic	al Inform	ation			
Component Carbon Monoxide Nitric Oxide Sulfur Dioxide Propane		Analyzer Ma Thermo Thermo Thermo Thermo	Nicolet iS50 Nicolet iS50	AUP221053 AUP221053 AUP221053 AUP221053	0 FT-IR 0 FT-IR	e	Last Calibrat 3/3/2023 3/10/2023 2/17/2023 3/9/2023	ion Date
First Assay Date	3/9/2023					Second Assay D	ate	3/18/2023
			Reference	ce Standa	ard(s)			
Component Carbon Monoxide Nitric Oxide NOx Sufur Dioxide Propane Nitrogen		GMIS # 12-15-2001 10-23677-4 10-23677-4 2-17-2101 05-10-1710		Cylinder # CC713082 CC740243 CC740243 CC740243 CC409176 CC493924		Concentration 25.19 ppm 25.89 ppm 26.35 ppm 50.19 ppm 25.13 ppm Balance Gas	Uncertainty +/- 0.11 ppm +/- 0.12 ppm +/- 0.34 ppm +/- 0.06 ppm	9/26/2025 9/26/2025 2/17/2025
CO GMIS certified by: Component Carbon Monoxide Nitrogen	SRM # 1678c	N.I.S.T. Sam 4-K-30	ple #	Cylinder # CAL016760		Concentration 49.07 ppm Balance Gas	Uncertainty +/- 0,19 ppm	Expiration Date 2/4/2021
NO GMIS certified by: Component Nitric Oxide Nitrogen Oxides (NOx) Nitrogen	PRM			Cylinder # APEX13243 APEX13243		Concentration 50.02 ppm 50.02 ppm Balance Gas	Uncertainty +/- 0.20 ppm +/- 0.20 ppm	
SO2 GMIS certified by: Compone nt Sulfur Dioxide Nitrogen	SRM # 1893a	N.I.S.T. Sam 96-N-60	ple #	Cylinder# FF28076		Concentration 50,18 ppm Balanca Gas	Uncertainty +/- 0.28 ppm	Expiration Date 6/27/2023
Propane GMIS certified b Component Propane Nitrogen	y: SRM#/ 1867b	N.I.S.T. Sam 83-K-06	ple #	Cylinder # PF56587		Concentration 49.61 ppm Balance Gas	Uncertainty +/- 0.11 ppm	Expiration Date 7/1/2024

This calibration standard has been certified per the 2012 EPA Traceability Protocol, Document EPA 600/R-12/531, using the procedure G1.

Do Not Use This Standard Below 100 psig (0.7 Megapascals).

 Valve Outlet Connection CGA:
 660

 Mix Pressure(psig)(§70F :
 1900

 Certification Date:
 3/16/2023

 Shelf Like :
 2 years

 Exploration date:
 3/16/2026

<u>2 years</u> 3/16/2025 Cortified By: Telly Mag

Produced By: Coastal Specialty Gas: (409) 981-7700 2150 Interstate 10 East, Beaumont, TX 77703 Coastal Specialty Gas PGVP Vendor ID: 012023

Reviewed By: Been Subley

1.000

Certificate of Analysis - EPA Protocol Gas

Customer: American Welding & Ga: 5353 W Southern Ave Indianapolis, IN 46241	b.				PO Number: Reference#: Date Filled: Customer Part #:	444080 CGS-10-24389 9/2/2022 E6MAB01-A I=1				
Cylinder Number CC508574		Size ALS	Concentrati Mole	on Basis	Standard type EPA Protocol	Certificate ID 03-10112201				
	111		Certified	Concent	ration					
Carbon Monoxide = Nitric Oxide = NOx =		+/- 0.51 ppm +/- 0.55 ppm								
Sulfur Dioxide = Propane = Nitrogen =	51.95 ppm	+/- 0.55 ppm +/- 0.21 ppm s								
			Analytic	al Informa	ation					
Component Carbon Monoxide Nitric Oxide Sulfur Dioxide Propane		Analyzer Mal Thermo Thermo Thermo Thermo	Nicolet iS50 Nicolet iS50 Nicolet iS50	AUP201016 AUP201016 AUP201016 AUP201016	B FT-IR 8 FT-IR	le	Last Calibrat 9/12/2022 10/10/2022 9/29/2022 9/12/2022	ion Date		
First Assay Date	9/26/2022	Thomas	TAICOINTIDON	A01 201010	o r sing	Second Assay D		10/11/2022		
			Reference	e Standa	ard(s)					
Component Carbon Monoxide Nitric Oxide NOx Sulfur Dioxide Propane Nitrogen		GMIS # 01-27-2201 10-21521-2 10-21521-2 2-17-2101 05-10-1706		Cylinder # CC16375 CC438453 CC438453 CC438453 CC408176 CC493805		Concentration 50.71 ppm 51.32 ppm 52.83 ppm 50.19 ppm 49.86 ppm Balance Gas	Uncertainty +/- 0.16 ppm +/- 0.21 ppm +/- 0.34 ppm +/- 0.13 ppm		Expiration 1/27/2030 4/9/2025 4/9/2025 2/17/2025 5/1/2025	Date
CO GMIS certified by Component Carbon Monoxide Nitrogen	PRM			Cylinder# D687692		Concentration 50.05 ppm Balance Gas	Uncertainty +/- 0.15 ppm		Date	
NO GMIS certified by: Component Vitric Oxide Vitrogen Oxides (NOx) Vitrogen	PRM			Cylinder # APEX13243 APEX13243		Concentration 50.02 ppm 50.02 ppm Balance Gas	Uncertainty +/- 0 20 ppm +/- 0 20 ppm	Expiration 9/12/2022 9/12/2022	Date	
SO2 GMIS certified by Component Sulfur Dioxide Nitrogen	SRM # 1693a	N.I.S.T. Sam 96-N-60	ple #	Cylinder # FF28076		Concentration 50 18 ppm Balance Gas	Uncertainty +/- 0 28 ppm	Expiration 6/27/2023	Date	
Component	SRM #	N.I.S.T. Sam	ple #	Cylinder #		Concentration	Uncertainty	Expiration	Date	
Propane GMIS certified Component Propane Nitrogen		N.I.S.T. Sam 83-K-06	ple #	Cylinder # FF55567			Uncertainty +/- 0 11 ppm		Date	

This calibration standard has been cartified per the 2012 EPA Traceability Protocol, Document EPA 600/R-12/531, using the procedure G1.

Do Not Use This Standard Below 100 psig (0 7 Megapascals)

 Valve Gutlat Connection CGA
 660

 Mix Pressure(baid)@70F
 1900

 Gentication Date
 10/11/2022

 Shelf Life
 2 years

 Expiration date
 10/11/2024

Certified By panhar

Produced By: Coastal Specialty Gas: (409) 981-7700 2150 Interstate 10 East, Beaumont: TX 77703 Coastal Specialty Gas PGVP Vendor ID: 012022

Reviewed By

Data Cal

Data File Path: C:\Users\taylor pittman\Documents\AirSource Log Data Files

Data File Name: Rain CII Kiln 23 7-20-2023 Cal

1

	7/20/2023 17:33	7/20/2023 16:42	7/20/2023 16:38	7/20/2023 16:35	7/20/2023 15:38 7/20/2023 15:38	7/20/2023 15:35	7/20/2023 15:34 7/20/2023 15:34	7/20/2023 15:32	7/20/2023 14:40		7/20/2023 14:37 7/20/2023 14:39		7/20/2023 13:35 7/20/2023 13:40	7/20/2023 13:32 7/20/2023 13:34				7/20/2023 11:30	7/20/2023 11:34	7/20/2023 11:33 7/20/2023 11:34	7/20/2023 11:30 7/20/2023 11:32	7/20/2023 10:43	7/20/2023 10:38	7/20/2023 10:33 7/20/2023 10:34	7/20/2023 10:32 7/20/2023 10:32	7/20/2023 8:49	7/20/2023 8:46	7/20/2023 8:43 7/20/2023 8:45	7/20/2023 8:41 7/20/2023 8:42	7/20/2023 8:39 7/20/2023 8:40	7/20/2023 8:37/ 7/20/2023 8:37	7/20/2023 8:30	7/20/2023 7:48		7/20/2023 7:39 7/20/2023 7:39	7/20/2023 7:39		7/20/2023 7:34 7/20/2023 7:34	7/20/2023 7:32	7/20/2023 7:30	Time 7/20/2023 7:29
		P8 700	× 4	12/12/2023	r7 zero	8.4		10/10/003	r6 zero	8.4	12/12/2023	r5 zero	8.4	12/12/2023	IH ZEIO		12/12/2023	r3 zero	8.4	12/12/2023	12 HZ	5.55	8.4	12/12/2023	zero r1 zero		4	16.22	30.22	51.88 c3h8 span	12/12/2023	IIZ DIdS	5				5.86 co2		12.11/12.36	21 02	Comment zero direct
	0.03313337	0.000678168	12.06421	0.0189209	0.002034505	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.97876 12.00562	0.07171631	0.09969076	0.181071	12.02637	0.06209664	0.05187988	12.00409	0.1009428	11.98/3 0.09416853	0.15625	0.0102002	0 5133503	12.00256	0.05249023	0.02929688	12.05885	0.1376065		1.072998	1.983643	1.607444	0.1657104	12.06027	0.0/019043	0.04490444	20.92712	20.96522	20.96522	20.96522	20 06522	20.98134 12.24874	20.98134	0.004577637	CAI 2-02
ס	0.1796177	0.1803928	12.40112	0.178833	0.1495361	0 1 0 2 4 0 0 0	12.31812 12.31842	0.1373291	0.2258301	0.2543131	12,33887	0.1464844	0.1413981	12.33521	0.1464844	12.42065 0.2443586	0.219/266	0.3/1204/	0 3710047	12.44812	0.2380371	0.2563477	12.48847	0.1792214		0.1885986	0.201416	0.2125133	0.2432251	12.4312	0.1642863	0.164359	5.934448	6.104234	6.104234 6.104234	6.104234	10000 A	5.455526 12.34741	5.455526	-0.006103516	CAI 2-CO2
Page 1 of 32	-0.08847655	8.331661	-0.08115233	-0.1592773	8.224511	0 10700	-0.1861328 -0.1861328	-0.2837891	8.187891	8.171615	-0.1861328	-0.2646825	8.236718	-0.1373047	-0.2105469	-0.1128906 8.234105	-0.2105469	0.2377790	000020	-0.0640625	-0.1861328	8.30996	-0.1115343	-0.1106712		8.504053	16.14484	30.01185	51.99525	4.246129	-0.05/95898	-100	26.86768	30.48742	30.48742 30.48742	30.48742	30 40740	31.38428 30.62541	31.38428	30.09338	hermo THC 1-THC

Electronic Filing: Received, Clerk's Office 03/15/2024

Time	Comment	CAI 2-02	CAI 2-CO2	hermo THC 1-7
7/20/2023 17:33	12/12/2023			
7/20/2023 17:35		11.97859	12.33521	-0.01523438
7/20/2023 17:35		11.97917	12.34131	-0.01523438
7/20/2023 17:36		12.07581	12.36115	-0.01523437
7/20/2023 17:36	8.4			
7/20/2023 17:37		0.3363715	0.2882216	8.358788
7/20/2023 18:42	r9 zero			
7/20/2023 18:44		0.0221946	0.1376065	-0.08181817
7/20/2023 18:47		12.00867	12.32605	-0.01523438
7/20/2023 18:47		11.9873	12.32571	-0.009809027
7/20/2023 18:48	8.4			
7/20/2023 18:48		0.3869098	0.2685547	8.332253

Data 1-min

	7/20/2023 5:53 7/20/2023 5:53 7/20/2023 5:53 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:55 7/20/2023 5:56 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57 7/20/2023 5:57	Time
	setup	Comment
	20.25438 20.22444 20.2525 20.2444 20.2555 20.2444 20.2555 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.266 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.27613 20.2665 20.2665 20.2665 20.2665 20.2665 20.2665 20.2665 20.25613 20.2665 20.25613 20.2665 20.2563 20.2563 20.2665 20.2563 20.256	CAI 2-02
J	-0.1115436 -0.086912436 -0.086912436 -0.086912436 -0.086912436 -0.12524782 -0.128949 -0.1262533 -0.1262653 -0.1289948 -0.128924 -0.128924 -0.128924 -0.128924 -0.128924 -0.128924 -0.128924 -0.128924 -0.128924 -0.128924 -0.12811 -0.085625 -0.09180259 -0.09180259 -0.09180259 -0.09180259 -0.09180259 -0.09180259 -0.09180259 -0.02918025 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.11255 -0.0291802 -0.12802	CAI 2-CO2
	 53.30562 53.30575 53.30562 53.30562<	Thermo THC 1

Page 5 of 32

Electronic Filing: Received, Clerk's Office 03/15/2024

-	Data
hermo THC	1-min

	$\omega \omega \omega$	7/20/2023 9:42 7/20/2023 9:43 7/20/2023 9:44		$\omega \omega$	7/20/2023 9:36 7/20/2023 9:37	$\omega \omega \omega$	7/20/2023 9:32	7/20/2023 9:30 7/20/2023 9:30 7/20/2023 9:31	2023	7/20/2023 9:26	υωι	7/20/2023 9:22	ιω ω	$\omega \omega$	7/20/2023 9:16	7/20/2023 9:14	ັພ	ωω	ωü	ωω	7/20/2023 9:04 7/20/2023 9:05	7/20/2023 9:02 7/20/2023 9:03	$\omega \omega$	່ພິພ	7/20/2023 8:56 7/20/2023 8:57	0 00 00	0 0 0 0	7/20/2023 8:50 7/20/2023 8:51	ωω	7/20/2023 8:46 7/20/2023 8:47	8 8	$\omega \omega$	7/20/2023 8:40 7/20/2023 8:41	7/20/2023 8:38 7/20/2023 8:39	7/20/2023 8:36 7/20/2023 8:37	7/20/2023 8:34 7/20/2023 8:35	2023 8: 2023 8:	7/20/2023 8:30	0 00 0	$\omega \omega$	7/20/2023 8:25	7/20/2023 8:23 7/20/2023 8:24	7/20/2023 8:21 7/20/2023 8:21	Time	
																																												Comment	
	18.62401 18.63659 18.63433	18.6181 18.64547	18.62409 18.61733	18.62117 18.63685	18.63312 18.62462	18.63648 18.63491	18.63743 18.63712	18.61912 18.63396	18.62947	18.64777 18.63310	18.65512	18.63732	18.64584	18.60889 18.62891	18.6105	10.00249	18.61064	18.59039 18.61324	18.60483 18.60607	18.60304 18.60373	18.58279 18.5916	18.59058 18.58615	18.59383 18.6064	18.5981 18.58436	18.59182 18.59968	18.58473 18.58127	18.53455 18.57472	1.493534 17.23114	10.24594 13.25724	18.23255 2.03788	1.963951 11.13102	0.09528063 9.375365	11.99586 5.570838	0.02989626 6.5797	0.03795737 0.03331502	0.05109002 0.04060633	7.742741 0.1120534	18.63468	18.64826	18.63501	20.47037	20.48394 20.46458	20.51594 20.50056	CAI 2-02	
Dan	1.416343 1.411228 1.422229	1.414773 1.402853	1.406842 1.418391	1.40761 1.395914	1.400483 1.406061	1.403187 1.404832	1.403589	1.423142 1.405589	1.427894	1.428477 1.423440	1.424751	1.441/264 1.431914	1.4322/9 1.424444	1.443463 1.435271	1.445217	1.45053	1.439626	1.459325	1.452198 1.450846	1.455853 1.448858	1.470984 1.456306	1.4651 1.465611	1.463894 1.457973	1.45805	1.452927 1.460275	1.457832	1.461627	0.366284 1.452088	1.05653 0.9273689	1.399532 0.2102972	0.2167838 1.12714	0.2375254 0.9614682	12.44584 4.193878	0.1612132 6.590262	0.1643615 0.1617795	0.149967 0.161061	0.4273897 0.1533059	1.42/469 1.430678	1.4249	1.398825	0.2628102	0.2396623 0.2601534	0.2220018	CAI 2-CO2	[}
2 C f 2 C	0.9125001 0.9300431 1.616271	0.9125001 0.9125	0.9367681	0.933698	0.9361833 0.9303748	0.9325285 0.9370605	0.9493407	0.9373529 0.9373503	0.9369143	0.9523185	0.9477326	0.9385225	0.9373503	0.9835498	0.9608899	0.945779 0.0545026	0.9879356	1.008256	1.010742 1.010157	1.010303 1.010157	1.011327 1.011465	1.032086 1.010449	1.057816 1.018198	1.042173	1.10636	1.156642 1.168555	1.167168	6.91893 1.187781	4.91244 5.751887	4.487918 16.54307	30.36361 7.005907	52.0062 21.08604	3.34689 86.4973	-0.2301424 7.520947	-7.992499 -56.85396	3.07531 -2.314166	42.25873 7.386977	49.26844 48.23106	53.40222	59.92237	46.28016	44.94542 46.16269	53.19564 46.66303		ĘĒ

Page 6 of 32

-	Data
hermo THC	1-min

	7/20/2023 9:48 7/20/2023 9:51 7/20/2023 9:52 7/20/2023 9:53 7/20/2023 9:54 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 9:55 7/20/2023 10:50 7/20/2023 10:51 7/20/2023 10:51 7/20/2023 10:52 7/20/2023 10:52 7/20/2023 10:53 7/20/2023 10:52 7/20/2023 10:53 7/20/2023 10:53 7/20/2023 10:53	Time
		Comment
	18.58802 18.58802 18.58802 18.58803 18.58803 18.28241 18.28241 18.28241 18.28241 17.65813 17.76581 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.765813 17.75966 17.7284643 17.28864 17.728864 17.728864 17.728864 17.728864 17.728864 17.728864 17.728864 17.72821 16.7675 16.77910 16.76881 12.75864 17.76581 12.75864 17.76581 12.75864 17.76581 12.75864 15.76881 12.75864 15.76883 12.058667 17.15702 17.15702 15.74706 16.77881 16.76881 16.76881 16.76881 16.76881 16.76881 16.76881 16.76861 16.76861 16.76851 16.76851 16.76851 16.5791 16.56382 16.55954 16.55955 16.44669 16.55751 16.44669 16.44501 16.44501 16.44669 16.44501 16.44669 16.44501 16.44901 16.44901 16.44901	CAI 2-02
ן	1.460604 1.460604 1.482827 1.522407 1.522407 1.522407 1.522407 1.522407 1.522407 1.522407 1.522407 1.522407 1.522407 2.151735 2.161093 2.201063 2.212063 2.2212063 2.2212063 2.22207075 2.221263 2.22207075 2.221263 2.22207075 2.221263 2.22207075 2.22207075 2.279502 2.279503 2.279503 2.289274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2.299274 2	CAI 2-CO2
1	 4.577529 4.577529 4.577529 4.577529 4.577529 4.577529 4.578515 4.52255 4.523667 4.523667 4.523667 4.523667 4.523667 4.523667 4.523687 4.5246881 4.5246881 4.52526 4.52526 4.526814 4.711149 4.526814 4.526831 4.526833 5.528838 5.528838 5.528838 5.528838 5.528838<!--</td--><td></td>	

Page 7 of 32
_	Data 1
hermo IHC	1-min

7/20/2023 12:38 7/20/2023 12:39 7/20/2023 12:40 7/20/2023 12:41 7/20/2023 12:41 7/20/2023 12:42 7/20/2023 12:43 7/20/2023 12:44	7/20/2023 12:32 7/20/2023 12:33 7/20/2023 12:34 7/20/2023 12:34 7/20/2023 12:35 7/20/2023 12:36 7/20/2023 12:37	7/20/2023 12:28 7/20/2023 12:29 7/20/2023 12:30 7/20/2023 12:31	7/20/2023 12:25 7/20/2023 12:26 7/20/2023 12:26 7/20/2023 12:27	7/20/2023 12:21 7/20/2023 12:22 7/20/2023 12:23 7/20/2023 12:23	7/20/2023 12:18 7/20/2023 12:19 7/20/2023 12:20	3 12: 3 12:	7/20/2023 12:12 7/20/2023 12:13 7/20/2023 12:14		7/20/2023 12:06 7/20/2023 12:07 7/20/2023 12:08				7/20/2023 11:54 7/20/2023 11:55 7/20/2023 11:57			7/20/2023 11:46 7/20/2023 11:47 7/20/2023 11:48	1111	<u>+ + +</u>	7/20/2023 11:38 7/20/2023 11:39 7/20/2023 11:40	EE	7/20/2023 11:33 7/20/2023 11:34 7/20/2023 11:35	H H H	: E E	EE	7/20/2023 11:23 7/20/2023 11:24 7/20/2023 11:25	: II II	7/20/2023 11:18 7/20/2023 11:19 7/20/2023 11:20	H H	Time
																													Comment
0.106976 0.05156922 7.727123 12.02371 13.81098 0.6689746 0.05835108	16.08887 16.09795 16.04373 16.02916 8.496313	16.06874 16.07465 16.03021 16.07564	16.07306 16.09764 16.06018	10,10419 16.06203 16.10177	16.15232 16.09084 16.08611	16.072 16.10986 16.10467	16.13163 16.09057 16.14095	16.13927 16.13064 16.12957	16.17167 16.17068 16.14855	16.15392	16.17307 16.1609 16.16604	16.18689 16.15005 16.19342	16.17897 16.17467 16.18714	16.22333 16.22339	16.26471 16.22643 16 21072	16.24029 16.22059 16.21397	16.21002 16.22614	16.21481 16.22906 16.10511	8.419307 16.05148 16.19001	7.717023 0.1161861	0.09791209 3.062466 11.89382	10.29341 16.27351 7.715502	16.3208 16.29944	16.34056 16.29518	16.32876 16.32471 16.34829	16.35843 16.35088	16.35404 16.3596 16.34685	16.3562 16.35283	CAI 2-02
0.2256108 0.2184839 9.48203 12.35147 4.518685 0.3044448 0.2375959	3.224337 3.235819 3.261945 3.261945 3.241148 3.266852 1.426213	3.235517 3.258656 3.273641 3.253137	3.25361 3.229966 3.269474	3.207577 3.26027 3.240821 3.217869	3.188922 3.226348 3.237357	3.229338 3.20953 3.194355	3.18768 3.207615 3.162864	3.162608 3.177615 3.157215	3.136045 3.135572 3.174413	3.137243 3.144083 3.148756	3.140058 3.152886 3.137243	3.132858 3.157143 3.124278	3.130377 3.139433 3.131104	3.088633	3.043438 3.072042 3.094556	3.045983 3.071311 3.076428	3.061538 3.057715	3.05099 3.025809 3.084130	2.044458 3.071421 3.046817	6.342497 0.3040062	0.2415457 4.671419 12.43169	2.991392 3.008448 1.198957	2.97659 2.990178	2.96907 2.99573	2.9542/4 2.956733 2.951945	2.92929 2.949996	2.92798 2.934047 2.949924	2.947316 2.946842	CAI 2-CO2
-0.1615723 -0.2204879 -0.1387576 -0.07795055 2.267992 8.218577 8.231999	0.6655807 0.6398263 0.6392662 0.627959 0.6145298 1.046415	0.693935 0.6557859 0.6651421 0.6734751	0.7045434 0.7148474 0.6895562	0.8577601 0.8574945 0.7789484 0.7717161	0.6022797 0.6079811 0.6189349	0.5916492 0.6033523 0.6093577	0.58576 0.5840718 0.5981863	0.5809357 0.5880567 0.5808145	0.5727367 0.5869783 0.5869295	0.5951163 0.5952633 0.5980401	0.6040339 0.6069577	0.6321028 0.6143297 0.605662	0.6145039 0.6283949	0.6247619	0.6323186 0.631518 0.6351728	0.6524234 0.6388276 0.6329799	0.0702597 0.6698291 0.6617797	0.700813 0.697012 0.6787004	2.999542 0.7411619 0.7019277	4.504707 8.239337	-0.1789692 -0.1481226 -0.06523199	0.0937097 0.6758142 1.241143	0.6943709 0.6887034	0.6913192 0.6930648	0.6940882 0.6940882 0.6907257	0.6959506	0.7000385 0.6968414 0.6950976	0.6934904 0.6966729	Thermo THC 1-

Page 8 of 32

Data 1-min

	7/20/2022 12:45 7/20/2022 12:45 7/20/2022 12:45 7/20/2022 12:45 7/20/2022 12:51 7/20/2022 12:52 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:55 7/20/2022 12:56 7/20/2022 12:57 7/20/2022 13:01 7/20/2022 13:02 7/20/2022 13:03 7/20/2022 13:03 7/20/2022 13:04 7/20/2022 13:05 7/20/2022 13:07 7/20/2022 13:07 7/20/2022 13:07 7/20/2022 13:07 7/20/2022 13:07 7/20/2022 13:07 7/20/2022	Time
		Comment
	15.99267 15.99268 15.99267 15.92261 15.92667 15.92262 15.92667 15.	CAI 2-02
I	 3.2252861 3.2252861 3.2252861 3.2252861 3.25131 3.2514613 3.2514613 3.2514613 3.251612 3.251725 3.251612 3.251612 3.251725 3.251612 3.251612 3.251725 3.251612 3.251612	CAI 2-CO2
	1.992279 1.92279 0.63034916 0.649306 0.	

Page 9 of 32

	Da
Ľ,	ta 1
ermo	÷.
HC	2

	7/20/2023 14:15 7/20/2023 14:15 7/20/2023 14:15 7/20/2023 14:16 7/20/2023 14:15 7/20/2023 14:17 7/20/2023 14:12 7/20/2023 14:12 7/20/2023 14:22 7/20/2023 14:22 7/20/2023 14:22 7/20/2023 14:22 7/20/2023 14:22 7/20/2023 14:23 7/20/2023 14:23 7/20/2023 14:23 7/20/2023 14:23 7/20/2023 14:23 7/20/2023 14:23 7/20/2023 14:33 7/20/2023 14:33 7/20/2023 14:33 7/20/2023 14:43 7/20/2023 14:43 7/20/2023 14:51 7/20/2023 14:52 7/20/2023 14:53 7/20/2023 15:53 7/20/2023 15:53 7/20/2023	Time
		Comment
	15.93452 15.93452 15.93452 15.93255 15.93255 15.93255 15.93255 15.93255 15.93255 15.93255 15.93255 15.93255 15.93255 15.93255 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.9326 15.8732 15.8732 15.8732 15.87455 15.87455 15.87556 1	CAI 2-02
Page	3.245342 3.245342 3.265707 3.265707 3.265707 3.265707 3.265707 3.265707 3.265707 3.265707 3.265707 3.265707 3.265708 3.265708 3.265728 3.265728 3.265728 3.265728 3.265728 3.265728 3.265729 3.27572 3.265728 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.265729 3.27572 3.26572 3.27572 3.27572 3.27572 3.27572 3.27572 3.26572 3.275777 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27572 3.27577 3.27572 3.27577 3.27572 3.27572 3.27572 3.27572 3.27572 3.275777 3.27572 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.275777 3.2757777 3.2757777 3.2757777 3.2757777 3.2757777 3.2757777 3.27577777 3.27577777 3.27577777 3.275777777 3.27577777 3.275777777 3.2757777777 3.27577777777777777777777777777777777777	CAI 2-CO2
10 of 32	0.4571516 0.4220486 0.4220486 0.4220486 0.4220486 0.4220486 0.4220486 0.4220486 0.4220486 0.4220486 0.4220486 0.422049 0.4463213 0.337675 0.33645718 0.33624476 0.3376758 0.3476759 0.33669518 0.3376758 0.337	Thermo THC 1-

Data 1-min

	1/20/2022 15:43 7/20/2022 15:44 7/20/2022 15:44 7/20/2022 15:45 7/20/2022 15:45 7/20/2022 15:46 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:56 7/20/2022 15:56 7/20/2022 15:56 7/20/2022 15:57 7/20/2022 15:56 7/20/2022 15:56 7/20/2022 15:56 7/20/2022 15:56 7/20/2022 15:56	Time
		Comment
	15.58295 15.58265 15.5226 15.5266 15.5226 15.5266 15.5276 15.5266 15.5266 15.5266 15.5266 15.5266 15.5266 15.5266 15.5276 15.5266 15.5266 15.5276 15.5266 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5276 15.5266 15.5276 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5266 15.5276 15.5276 15.5266 15.5276 15.5	CAI 2-02
I	3.457258 3.457258 3.457258 3.45925 3.45926 3.4	CAI 2-CO2
)	0.4125224 0.412524 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.412522 0.425614 0.42506349 0.4250156 0.4250156 0.4250157 0.4250157 0.4250157 0.4250157 0.4250157 0.4250158 0.4250157 0.425	Thermo THC 1-

Page 11 of 32

Data 1-min

7/20/2023 17:11 7/20/2023 17:11 7/20/2023 17:11 7/20/2023 17:11 7/20/2023 17:11 7/20/2023 17:11 7/20/2023 17:12 7/20/2023 17:11 7/20/2023 17:12 7/20/2023 17:12 7/20/2023 17:21 7/20/2023 17:22 7/20/2023 17:22 7/20/2023 17:23 7/20/2023 17:23 7/20/2023 17:23 7/20/2023 17:23 7/20/2023 17:23 7/20/2023 17:33 7/20/2023 17:35 7/20/2023 17:35 7/20/2023 17:35 7/20/2023 17:35 7/20/2023 17:35 7/20/2023 17:55 7/20/2023 18:10 7/20/2023 18:13 7/20/2023 18:13 7/20/2023 18:25 7/20/2023	Time
	Comment
15.2075 15.2076 15.2076 15.2076 15.2282 15.2076 15.12817 15.1147 15.1147 15.2112 14.8208 14.9208 14.9208 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.92508 14.9253 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.8207 14.82088 14.72588 14.72588 14.72588	
3.9777966 3.777966 3.77596 3.765179 3.786775 3.876775 3.876873 3.786775 3.876873 3.876873 3.876875 3.89745 3.89745 3.89745 3.89746 3.921193 3.921193 3.921193 3.921193 3.921193 3.921193 3.921193 3.921207 3.9221207 3.9	CAI 2-CO2
0.4895657 0.4895657 0.5276266 0.517262 0.461752 0.4625252 0.4525266 0.4525266 0.4525266 0.4525266 0.4525266 0.4525266 0.4525266 0.522642 0.52277 0.522642 0.522642 0.522642 0.522642 0.52277 0.522642 0.52277 0.522772 0.52778158 0.52737723	Thermo THC 1-
	1/10/2012/11/11 1.5.00/ 1.5.00/ 1.5.00/ 1/0/2012/11/11 1.5.00/ 1.5.00/ 1.5.00/ 1/0/2012/11/11 1.5.00/ 1.5.00/ 1.5.00/ 1/0/2012/11/11 1.5.00/ 1.5.00/ 1.5.00/ 1/0/2012/11/11 1.5.00/ 1.5.00/ 3.7010/ 1/0/2012/11/11 1.5.00/ 1.5.00/ 3.7010/ 1/0/2012/11/11 1.5.00/ 1.5.00/ 3.7010/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.7010/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.7010/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.7010/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.7010/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.8017/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.8017/ 1/0/2012/11/11 1.5.00/ 3.7010/ 3.8017/ 1/0/2012/11/11 1.5.00/ 3.8017/ 3.8017/ 1/0/2012/11/11 1.5.00/ 3.8017/ 3.8017/ 1/0/20

Page 12 of 32

Time	Comment	CAI 2-02	CAI 2-CO2	Thermo THC 1-
7/20/2023 18:38		14.59136	4.152752	0.5583498
7/20/2023 18:39		14.69226	4.047215	0.5397096
7/20/2023 18:40		14.67143	4.071447	0.5617845
7/20/2023 18:41		14.67197	4.070241	0.5707022
7/20/2023 18:42		14.73696	4.010083	0.5594454
7/20/2023 18:43		13.36118	3.356093	1.278127
7/20/2023 18:44		0.5572728	0.1557486	-0.05359934
7/20/2023 18:45		0.04765859	0.1342773	-0.08116685
7/20/2023 18:46		1.768082	2.944014	-0.08204393
7/20/2023 18:47		11.72044	12.24663	-0.01302828
7/20/2023 18:48		12.00415	12.32567	-0.01157956
7/20/2023 18:49		5.671619	4.543123	5.814924
7/20/2023 18:50		1.102361	0.7428015	6.873757
7/20/2023 18:51		13.73328	4.021924	0.8075334
7/20/2023 18:52		14.51499	4.153391	0.658842

Appendix C-3 VE Field Data

AIR SQURGE iling: Receivele Cipitsson & Observation Report

Client/Facility	11 CARBON)		Proie	ect #	Ц	73	
	ACK	· · ····			<u>un</u> #		15	
		0 15	30 45		0	15	30	45
Regulation/Test Method	. 0	00	00	30	5	5	5	ଚ
Ma	1	55	55	31	5	5	5	Ś
Observation Time	2	510	10 10	32	5	5	5	S
Test Date: 7/20-7-3		10 15	15 20	-		5	<u>s</u> -	5
Start Time: 19999:45	4	20 20	25 25	-	S	3	5	9
End Time: 10:45	5	20 30	30 30	-		Ð	Ő	0
Observer Location		Set Ave			S	et Ave	rage:	
Direction from Source: NE	6	35 35	4040	36	6	0	0	0
Distance from Source: 100	7.	40 40	45 45	37	Ø	ð	0	D
Height of Observation Point: 130	8	45 45	40 45	38		0	Ð	0
Meterological Data	9	40 40	45 45	39	0	0	0	0
Wind Direction:	10	40 45	45 45	40	0	0	0	O
Wind Speed (mph): 3	11	50 50	50 45	41	0	0	0	0
Temperature (°F): 79		Set Ave			S	et Ave	rage:	
Sky Condition: CLOUD	12	45 50	50 50	42	0	0	Ø	σ
Background: CVOVIN SV-	13	45 45	45 45	43	0	0	0	0
Production Data	14	45 50	50 43	44	0	0	0	σ
	15	45 40	40 40	45	5	0	5	0
· · ·	16	35 35	35 35	46	5	0	5	0
	17	30 30	30 25	47	S	0	S	0
		Set Ave				et Ave	States and the second	
Site Drawing	18	25 25	20 20			0	5	0
Site Drawing	19	20 20	20 15	49	S	0	S	Ō
	20	15 5	15 15	50	5	O	5	0
	21	15 15	10 15	51	S	0	S	0
l ž	22	15 20	2015	52	S	0	5	0
160	23	15 20	20 20	53		0	Š-	0
		Set Ave				et Ave	rage:	
المذكر ا	24 25	15 1 5 20 20	15 20			0	5	0
BT	* 25 26		20 20	55 56		0	5	0
<u>م</u>	26	15 15		- 50 57	5		S	0 N
X= OBSERVER	28	15 10		57	3	0	5.	0
E FW X= OBSEPVER	20 29	5 10	15 10 10 5 3 3	59	2	0	5	D D
	29	Set Ave		- 59		et Ave		D
	1				3		augea	
Certified Observer	Su	mmary of Re	sults		Co	mmei	nts.	
Name: LASA HOOPCOM		imum: 🔿		 				
Signature:		kimum: 50	·······	 				
mart Ridge Krv		rage: 13.	7					
Certification Date: 0.3 - 19 23		, y		1		····		

2 × 3/1/22

AIR SOURCE Filing: RVisible, Emissome Observation Report

)

1.000

 $\gamma_{j} \neq$

Clionh/Englishe DAAL)		Draight # 11177
	CANBON	Project # $4/73$
Source Identification K1 STA	0 15 30	Run # 2 45 0 15 30 45
Regulation/Test Method		
M/9	0000	0 30 O O O O 0 31 0 5 5 5
Observation Time	2006	
Test Date: 7/20/23	3 0 0 0	
Start Time: 12:11	4000	0 34 0 5 0 5
End Time: 3:	5 0 0 0	0 35 0 5 0 5
Observer Location	Set Average:	Set Average:
Direction from Source: ME		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Distance from Source: 100'		
Height of Observation Point: 1000 1:30	8 <u>5 5 5</u>	<u>5</u> 38 0 5 0 5
Meterological Data	9 5 5 5 10 5 5 5	S 39 0 S 0 S S 40 0 S 0 S
Wind Direction: WASW	10 5 S S	
Wind Speed (mph):		
Temperature (°F): S2.	Set Average:	Set Average:
Sky Condition: MOSTLY CLOUPY	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 42 0 5 0 5 5 43 0 5 0 5
Background: (Nover Steven	13 5 5 5	
Production Data		5 44 0 5 0 S S 45 5 5 5 5
	17 0 5 0	
City Duration	Set Average:	Set Average:
Site Drawing		5 48 0 5 0 5
	19 0 5 0	S 49 O S O S S 50 D S O S
T		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 51 0 5 0 S
		S 52 0'S 0 S S 53 0 S 0 S
5 5		
content hand	Set Average:	Set Average:
X= offerer		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
X- observan	26 <u>5</u> <u>5</u> <u>5</u> 27 <u>5</u> <u>5</u> <u>5</u>	
KAA		
	· · · · · · · · · · · · · · · · · · ·	
VKC		
	Set Average:	Set Average:
Certified Observer	Summary of Results	Comments
Name: LEVS HOPPER	Minimum: O	
Signature:	Maximum: S	
les troom	Average: 2.71	
Certification Date: 03 - 14-23	Avelaye.	·

214 8/1/23

- 91

AIR SOURCE Filing: Receivele, Emissonse Observation Report

Client/Facility	CARBON		Project # 4	173
Source Identification K1 S			Run # 3	
		0 15 30 45	0 1	
Regulation/Test Method	0	0505	30 0 0	00
Mg	1	0505	31 0 0	
Observation Time	2	0505	32 0 0	
Test Date: 7/20/23	- 3	0505	33 0 0	
Start Time: 13:44	4	0505	34 0 0	
End Time: 14:37	5	0505	35 O C	00
Observer Location		Set Average:	Set A	verage:
Direction from Source: NE	6	0505	36 O C	00
Distance from Source: 100	7	0505	37 0 0	
Height of Observation Point:	8	0505	38 O C	
Meterological Data	9	0505		> 0 0
Wind Direction: W	10	0505	40 0 0	
Wind Speed (mph):	11	6 5 0 5		206
Temperature (°F): 80		Set Average:		verage:
Sky Condition: PRPAN (NOVDY	12	0505		
Background: BLATE/CLOWY SITY Production Data	13	0000	43 0 0	
Production Data	14 15	00000	44 O C	4
	15	0000 000	45 0 C 46 0 C	
	10	0000	46 0 C 47 0 C	
	1/	Set Average:		verage:
Site Drawing	18	0 0 0 0 0	48 0 0	
	19	0 0 0 0	49 6 0	
	20	0000	50 0 0	
	21	0000	51 O C	
8	22	0000	52 0 0	
	23	0000	53 O C	
		Set Average:		verage:
\$	× 24	0000	54	
e to	25	0000	55	
	26	0000	56	
N	. 27	0000	57	
X = OBSER VER	28	0000	58	
	29	0000	59	
E-fro N X=OBSERVER		Set Average:	Set A	verage:
Certified Observer	c	mmary of Results	Comm	onto
Name: VEX HTOPFIC		imum: O	Comm	cilla
Signature:		timum: C		
less form		rage: 0.0	-	
Certification Date: 3-14-23				
			-	

1

JL 8/1/23

TECHNOLOGIES INC. IIIng: Receivele Genissonse Observation Report

Client/Facility	8 <u>1</u>	ORANI					Proje	ct #	2110	77	
Source Identification	KIST	- ALL						un #	<u>417</u>	3	
oource ruentineation	<u>K + 01</u>	PTU	0	15	30	45		0	15	30	45
Regulation/Test Met	hod	0		T.			30	ð	0	0	TJ D
M9	livu		6	0	0	3 Q	30 31				,.
Observation Time		1 2	-0+	0	0	Ø		Ő	8	0	
Test Date: 7/20/23	·	- 3	Ø		<u>گ</u>	2	32	0		0	0
			Ø	0	0	0	33	0	0	0	0
Start Time: 16:15		4 5	8	0	0	00	34	0	0	0	0 0
Observer Location		5		<u>O</u>	0	0	35	0	Ó	0	V
Direction from Source:	h 	6	Ø	O I	øge:	6	36		et Ave	_	7
Distance from Source: 101)		7			0	0	30 37	<i>0</i> 0		0	0
Height of Observation Point: 130)	, 8	0	0		0 0	37 38		0	0	
Meterological Data		9		0	00	0	39	0	0	0	00
Wind Direction: W			· · ·	$\frac{1}{2}$	0	0	- 39 40	0	0	00	
Wind Speed (mph):		10		0	0	10	-10 41	0	0		$\frac{\mathcal{O}}{\mathcal{O}}$
Temperature (°F): %5		11		: Avera		LU	11		et Ave		0
Sky Condition: PKPT, CUN	m	12	0	0	n n	0	42	0	D	<i>aye</i> .	Õ
Background: BWE PAN U		13		6	0	$\frac{v}{a}$	43	-0	0	Ð	8
Production Data		13 14		σ	0	0	44	0	0		$\overline{\mathcal{O}}$
		15	9	Ŭ	6	ถ	45	ŏ	0	<u> </u>	0
		16			0	17	46	ð	ŏ	ŏ	$\frac{0}{0}$
		17		3	Ø	ŏ	47	Õ	Š	Ň	$\frac{0}{0}$
				Avera		<u> </u>			et Ave	rade:	U
Site Drawing		18	0	0	0	Ο	48		C)	()	τ
		19		ŏ	0	Ð	49	-0	0	0	Ő
<u>~</u>		20	0		ŏ	$\overline{0}$	50	ŏ	Ö	0	0
F.I		21	0	Ö	ΰ	-0	51	0	$\overline{\mathbf{n}}$	Ő	0
3		22	474	$\overline{\mathbf{x}}$	Ő	ð	52	ŏ	Ъ-	0	0
S		23	0	0	0	0	53	0	Ö	\overline{O}	0
		- -		Avera		- -			et Ave	*	<u>v</u>
		ິ 24	0	0	0	0	54	0	0	n	73
N	. 3 <u>0</u> .	25	Ō	0	ŏ	Ğ	55	6	\sim	$\overline{\delta}$	d
•	r.	26	Õ	D	Õ	0	56	Ø	ŏ	$\overline{\Lambda}$	\overline{n}
N ~ MOSEMM		. 27		$\overline{\mathbf{n}}$	0	70	57	$\overline{\bigcirc}$	0	ð	D
X = OBSERVER		28	0	0	0	0	58	Ď	ŏ	0	Ö
		29	Ő	Ö	A	\mathcal{O}	59	0	Ŏ	Ó	Ō
***	X		Set	Avera	age:			Se	et Ave	rage:	
		I	······································								
Certified Observer		Su	mmary o	of Res	ults			Col	nmen	Its	
Name: LEX HODPER	-	Міл	imum: (9							
Signature:		Max	(imum: (C							
leys Hor		Ave	rage: 🍸	<u>)</u>							
Certification Date: 03-14-	23					• •					
								•			
									,	_	
									11/2	3	
								54	p1/2	.3	¢

 $\left(\right)$

AIR SOURCEFiling: Revisible EmissonseObservation Report

Client/Facility	PAIN	CAP	&ก7√					Proje	ct #	u	72	· · · · ·
Source Identification	11.1 5	TAU		<u> </u>					.ın #	5	·	
				0	15	30	45		0	15	30	45
Regulation/Test Me	ethod		0	0	0	0	0	30	0	0	O	-0
			1	Ō	0	0	D	31	Ø	Ð	0	0
Observation Tim	1e		2	0	0	0	D	32	õ	D	Õ	0
Test Date: 7/20/03	·	-	3	Ö	0	0	D	33	0	0	0	D
Start Time: 17:47			4	Ø	Ø	Ø	0	34	0	0	0	σ
End Time: 18:47			5	10	0	0	0	35	0	0	0	ð
Observer Locatio	on			Se	et Ave	rage:	•		S	et Ave	rage:	•
Direction from Source: NE			6	0	0	Ø	D	36	0	0	0	0
Distance from Source: 190'			7	Ø	0	Ð	D	37	0	0	O	0
Height of Observation Point:	1		8	Ø	0	Ð	D	38	0	0	0	О
Meterological Da	ita		9	Ø	Ð	Ø	0	39	Ō	Õ	0	\mathcal{D}
Wind Direction: 🖠 N			10	0	0	0	D	40	0	D_	Ø	Ο
Wind Speed (mph):			11	Ø	0	Ø	σ	41	Q	D	0	0
Temperature (°F): 86				Se	et Ave	rage:			S	et Ave	rage:	
Sky Condition: PAPT CM	over		12	· O	0	0	0	42	Ø	0	0	0
Background: BLVE / PAP	r and si	КУ	13	0	0	0	0	43	Θ	0	0	-D-
Production Dat	a		14	0	0	0	D	44	Ø	0	0	0
			15	0	Ø	0	0	45	0	0	0	10
			16	0	0	0	D	46	Ø	D.	0	σ
			17	C	0	0	0	47	0	0	0	O
				Se	et Ave	rage:			S	et Ave	rage:	
Site Drawing			18	0	0	0	0	48	Ô	Ð	σ	Q
			19	0	0	Ö	0	49	Ø	0	0	О
			20	0	D	0	0	50	O	O	0	0
T I			21	0	D	0	D	51	Ø	0	O	0
X			22	O	0	0	0	52	Ø	Ō	0	0
4			23	0	D	0	D	53	0	0	0	D
		4		Se	et Ave	rage:			S	et Ave	rage:	
S Z		¥	24	Ø	0	0	0	54	0	0	0	0
e w	p.	È.	25	Ø	Ŏ	Ö	0	55	0	0	0	ъ
V		-	26	D	0	0	б	56	0	0	0	0
N X = OBSERVER			27	D	0	0	0	57	O	O	0	O
X = OBSERVER			28	Ō	0	0	D	58	0	O	0	0
	1		29	0	0	0	0	59	0	D	0	O
	<u>v</u>			Se	et Äve	rage:			S	et Ave	erage:	
	<u>~~/ ``</u>											
	<u></u>	1	-	· · · · · · · · · · · · · · · · · · ·			4					
Certified Observ				nmary		esults]	-	Co	mme	nts	
Name: UX HOOPER			Min	imum:	O	esults		-	Co	mme	nts	
			Mini Max	imum: dmum:	0 0	esults			Co	mme	nts	
Name: UX HOOPER Signature: UN HOOP	~		Mini Max	imum:	O	esults		-	Co	mme	nts	
Name: UX HOOPER	~		Mini Max	imum: dmum:	0 0	esults			Co	mme	nts	
Name: UX HOOPER Signature: UN HOOP	~		Mini Max	imum: dmum:	0 0	esults		-	Co		nts 	· · · · · · · · · · · · · · · · · · ·

()

* 8/11

Visible Emission Training

This certifies that

Lex Hooper

has successfully completed the Visible Emission Training held March 14th and 15th, 2023 by the Kansas City, Missouri Health Department, Air Quality Program and is now certified as a visible emission observer.

Expiration: October 2023

Naser Jouhari, MIS Deputy Director Environmental Health Division

APPENDIX D

LABORATORY ANALYSIS

Sample Evaporations

Project	Number	4173	Proje	ct Name	Rain Carb	on M5.202 '23
Rea	gent Informa	ation	Analyst	A. VanSickle	L. Hooper	
DIUF H2O		LC267505	Date	07/24/23	07/31/23	
Hexane		214233	Time	11:20	11:50	
Acetone	Fisher	222473	Cal. Wt.	1000.1	1000.1	
Run No.	Sample No.	Container No.	Leakage	Full Weight	Empty Weight	Comments
000	010	C22-8-29	None	300.5	166.9	
000	012	C22-8-30	None	344.6	165.8	
000	013	C22-8-31	None	261.0	164.4	
PB	012	C22-8-32	None	739.1	505.5	
PB	013	C22-8-33	None	524.5	293.5	
FTRB	012	C22-8-34	None	763.5	504.1	
FTRB	013	C22-8-35	None	557.0	297.0	
111	010	C22-8-36	None	294.6	165.5	
111	012	C22-10-21	None	926.0	503.9	
111	013	C22-8-37	None	571.4	294.8	
112	010	C22-8-38	None	303.1	167.1	
112	012	C22-10-22	None	932.6	505.7	
112	013	C22-8-39	None	579.4	298.2	
113	010	C22-8-40	None	296.5	167.5	
113	012	C22-10-23	None	916.1	506.0	
113	013	C22-8-73	None	575.7	297.5	
114	010	C22-8-74	None	291.5	165.7	
114	012	C22-10-24	None	857.8	501.5	
114	013	C22-8-75	None	560.9	295.2	
115	010	C22-8-76	None	306.4	165.7	
115	012	C22-8-77	None	876.0	502.3	
115	013	C22-8-78	None	557.3	296.5	

Comments:

Completed By:

Date:

Container Final Weights

Р	roject Nu	ımber	4173	Project	t Name	Rain Carbon M5.202		23
	Contai	ner LogIn	Analyst L. Hooper		to Dryer: to Dryer:	08/01/23 10:00		
	Δι	nalyst	L. Hooper	L. Hooper	L. Hooper	L. Hooper		
		Date	08/02/23	08/02/23	08/03/23	08/04/23		
		e (24 hr)	10:00	16:00	13:00	11:30		
		Temp, °F	78	77	77	78		
		e Humidity	51 %	51 %	50 %	51 %		
	Cal W	eight (g)	30	30	30	30		
	Initial	Cal Check	29.9990	29.9991	29.9990	29.9990	Decimals:	4
Run No.	Sample No.	Container No.	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
000	010	C22-8-29	28.8717	28.8716	28.8717	28.8718	28.8718	Р
000	012	C22-8-30	29.9428	29.9425	29.9425	29.9426	29.9426	Р
000	013	C22-8-31	30.5885	30.5884	30.5884	30.5886	30.5885	Р
PB	012	C22-8-32	28.2044	28.2040	28.2041	28.2044	28.2043	Р
PB	013	C22-8-33	28.7388	28.7386	28.7386	28.7388	28.7387	Р
FTRB	012	C22-8-34	29.5332	29.5328	29.5329	29.5331	29.5330	Р
FTRB	013	C22-8-35	29.9575	29.9574	29.9574	29.9575	29.9575	Р
111	010	C22-8-36	30.0937	30.0935	30.0938	30.0939	30.0939	Р
111	012	C22-10-21	1.6258	1.6260	1.6261	1.6263	1.6262	Р
111	013	C22-8-37	28.6514	28.6513	28.6513	28.6513	28.6513	Р
112	010	C22-8-38	29.0715	29.0710	29.0721	29.0722	29.0722	Р
112	012	C22-10-22	1.6476	1.6476	1.6477	1.6477	1.6477	Р
112	013	C22-8-39	30.8895	30.8892	30.8893	30.8894	30.8894	Р
113	010	C22-8-40	30.3450	30.3445	30.3456	30.3453	30.3455	Р
113	012	C22-10-23	1.6512	1.6511	1.6511	1.6510	1.6511	Р
113	013	C22-8-73	29.4593	29.4591	29.4592	29.4593	29.4593	Р
114	010	C22-8-74	29.7389	29.7383	29.7378	29.7373	29.7376	Р
114	012	C22-10-24	1.6891	1.6891	1.6890	1.6889	1.6890	Р
114	013	C22-8-75	28.5432	28.5430	28.5430	28.5432	28.5431	Р
115	010	C22-8-76	31.4437	31.4409	31.4404	31.4404	31.4404	Р
115	012	C22-8-77	31.3864	31.3770	31.3670	31.3675	31.3673	Р
115	013	C22-8-78	28.9150	28.9148	28.9150	28.9149	28.9150	Р
	Final	Cal Check	29.9990	29.9991	29.9990	29.9991		

Comments:

Drying Method: 🗹 Desiccator

Other:

Oven

Completed By:

Container Tare Weights

				Date In	to Dryer:	08/25/22		
	Containe	r LogIn			to Dryer:	12:15		
	-	I						
Analys		L. Hooper	L. Hooper					
Date		08/26/22	08/30/22					
Time (24	-	12:40 77	12:10					
	Room Temp, °F		75					
Relative Hu		50 %	49 %					
Cal Weigh	it (g)	30	30					
Initial Cal	Check	29.9990	29.9990			Decimals:	4	
Container No.	Туре	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F	
C22-8-25	50mL	29.5212	29.5212			29.5212	Р	
C22-8-26	50mL	29.9222	29.9222			29.9222	Р	
C22-8-27	50mL	29.0748	29.0749			29.0749	Р	
C22-8-28	50mL	29.4385	29.4384			29.4385	Р	
C22-8-29	50mL	28.8716	28.8716			28.8716	Р	
C22-8-30	50mL	29.9420	29.9420			29.9420	Р	
C22-8-31	50mL	30.5883	30.5884			30.5884	Р	
C22-8-32	50mL	28.2023	28.2024			28.2024	Р	
C22-8-33	50mL	28.7370	28.7371			28.7371	Р	
C22-8-34	50mL	29.5305	29.5305			29.5305	Р	
C22-8-35	50mL	29.9567	29.9567			29.9567	Р	
C22-8-36	50mL	30.0453	30.0452			30.0453	Р	
C22-8-37	50mL	28.6473	28.6472			28.6473	Р	
C22-8-38	50mL	29.0257	29.0255			29.0256	Р	
C22-8-39	50mL	30.8864	30.8863			30.8864	Р	
C22-8-40	50mL	30.2974	30.2973			30.2974	Р	
C22-8-41	50mL	28.9688	28.9689			28.9689	Р	
C22-8-42	50mL	29.3532	29.3535			29.3534	Р	
C22-8-43	50mL	29.0382	29.0384			29.0383	Р	
C22-8-44	50mL	28.4812	28.4811			28.4812	Р	
C22-8-45	50mL	29.4936	29.4935			29.4936	Р	
C22-8-46	50mL	28.5523	28.5523			28.5523	Р	
C22-8-47	50mL	28.6655	28.6655			28.6655	Р	
C22-8-48	50mL	29.8683	29.8683			29.8683	Р	
Final Cal C	Check	29.9990	29.9990					
Comments:								
Drying Method: 🗹	Desiccator	🔲 Oven 🔲	Other:					

Completed By:

Date:

Container Tare Weights

	Contrali	u La aTri		Date Into Dryer:	08/25/22	
	Containe	r LogIn		Time Into Dryer:	12:15	
Analyce	+	I Heeper			1	
Analys Date	L	L. Hooper 08/26/22	L. Hooper 08/30/22		1	
Time (24	hr)	13:00	12:20		•	
Room Tem		77	75		•	
Relative Hu	. /	52 %	49 %		•	
Cal Weigh		30	30			
					{	
Initial Cal C	Check	29.9990	29.9990		Decimals:	4
Container No.	Туре	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
C22-8-73	50mL	29.4556	29.4557		29.4557	Р
C22-8-74	50mL	29.6650	29.6652		29.6651	Р
C22-8-75	50mL	28.5396	28.5397		28.5397	Р
C22-8-76	50mL	31.3313	31.3314		31.3314	Р
C22-8-77	50mL	31.2496	31.2497		31.2497	Р
C22-8-78	50mL	28.9085	28.9085		28.9085	Р
C22-8-79	50mL	28.7896	28.7896		28.7896	Р
C22-8-80	50mL	29.3156	29.3155		29.3156	Р
C22-8-81	50mL	30.8033	30.8034		30.8034	Р
C22-8-82	50mL	29.4781	29.4779		29.4780	Р
C22-8-83	50mL	29.9455	29.9452		29.9454	Р
C22-8-84	50mL	28.5254	28.5254		28.5254	Р
C22-8-85	50mL	29.1104	29.1102		29.1103	Р
C22-8-86	50mL	29.7081	29.7078		29.7080	Р
C22-8-87	50mL	29.8353	29.8350		29.8352	Р
C22-8-88	50mL	30.2636	30.2634		30.2635	Р
C22-8-89	50mL	29.3369	29.3370		29.3370	Р
C22-8-90	50mL	28.7700	28.7699		28.7700	Р
C22-8-91	50mL	30.5821	30.5821		30.5821	Р
C22-8-92	50mL	30.0616	30.0615		30.0616	Р
C22-8-93	50mL	28.8915	28.8916		28.8916	Р
C22-8-94	50mL	30.3928	30.3925		30.3927	Р
C22-8-95	50mL	28.9429	28.9426		28.9428	Р
C22-8-96	50mL	30.0988	30.0987		30.0988	Р
Final Cal C	heck	29.9990	29.9990]	
Comments:					_	
Drying Method: 🗹	Desiccator	🔲 Oven 🛄	Other:			

Completed By:

Date:

Container Tare Weights

	Contoino	r LogTr		Date In	to Dryer:	09/16/22	
	Containe	r Login		Time In	to Dryer:	16:00	
Anahu	L					1	
Analys	t	A. VanSickle	L. Hooper				
Date		09/17/22	09/19/22				
Time (24		16:30	10:00				
Room Tem		78	78				
Relative Hu	-	58 % 30	53 % 30				
Cal Weigh							
Initial Cal	Check	29.9990	29.9990			Decimals:	4
Container No.	Туре	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
C22-10-1	pan	1.5868	1.5869			1.5869	Р
C22-10-2	pan	1.5795	1.5797			1.5796	Р
C22-10-3	pan	1.5829	1.5830			1.5830	Р
C22-10-4	pan	1.5836	1.5836			1.5836	Р
C22-10-5	pan	1.5896	1.5897			1.5897	Р
C22-10-6	pan	1.5953	1.5956			1.5955	Р
C22-10-7	pan	1.5896	1.5897			1.5897	Р
C22-10-8	pan	1.5845	1.5845			1.5845	Р
C22-10-9	pan	1.5797	1.5798			1.5798	Р
C22-10-10	pan	1.5844	1.5844			1.5844	Р
C22-10-11	pan	1.5880	1.5880			1.5880	Р
C22-10-12	pan	1.5930	1.5931			1.5931	Р
C22-10-13	pan	1.5892	1.5893			1.5893	Р
C22-10-14	pan	1.5960	1.5960			1.5960	Р
C22-10-15	pan	1.5974	1.5976			1.5975	Р
C22-10-16	pan	1.5977	1.5980			1.5979	Р
C22-10-17	pan	1.5908	1.5910			1.5909	Р
C22-10-18	pan	1.6029	1.6030			1.6030	Р
C22-10-19	pan	1.5963	1.5965			1.5964	Р
C22-10-20	pan	1.6011	1.6013			1.6012	Р
C22-10-21	pan	1.5954	1.5956			1.5955	Р
C22-10-22	pan	1.5902	1.5905			1.5904	Р
C22-10-23	pan	1.6015	1.6018			1.6017	Р
C22-10-24	pan	1.6010	1.6012			1.6011	Р
Final Cal C	heck	29.9990	29.9990				
Comments:						•	
Drying Method: 🗹	Desiccator	🗌 Oven 🔲	Other:				
			-				
Completed By:					Date:		
. ,							

Filter Final Weights

P	roject Nu	mber	4173	Project	t Name	Rain Carb	on M5.202 '2	3
	Filte	er LogIn	Analyst		o Dryer:	07/22/23		
		•9	A. VanSickle	Time Int	o Dryer:	17:00		
	Αι	nalyst	A. VanSickle	A. VanSickle	L. Hooper			
		Date	07/27/23	07/28/23	08/02/23			
		e (24 hr)	12:10	13:25	16:30			
		Temp, °F	74	76	77			
		e Humidity	54 %	54 %	51 %			
		eight (g)	30	30	30			
	Initial	Cal Check	29.9991	29.9991	29.9991		Decimals:	4
Run No.	Sample No.	Filter No.	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
111	011	F23-7-1	37.4590	37.4585	37.4580		37.4583	Р
112	011	F22-9-9	30.4659	30.4659	30.4659		30.4659	Р
113	011	F22-9-10	34.6459	34.6456	34.6456		34.6456	Р
114	011	F23-7-2	29.4118	29.4117	29.4114		29.4116	Р
		F22-10-24	37.1498	37.1493	37.1493		37.1493	P
Commer		Cal Check	29.9991	29.9991	29.9991			
		Desiccator	Oven 🔲	Other:				
Comple	eted By:					Date:		

Filter Tare Weights

	Filter	l e e Tre		Date In	to Dryer:	09/16/22	
	Filter	LogIn		Time In	to Dryer:	14:40	
A			L Lleener				
	alyst Date	A. VanSickle 09/17/22	L. Hooper 09/19/22				
	(24 hr)	16:20	10:15				
	Temp, °F	78	78				
	e Humidity	58 %	53 %				
	eight (g)	30	30				
	Cal Check	29.9989	29.9990			Decimals:	4
				Weight (g)	Weight (g)		_
Filter No.	Type	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
F22-9-1	82.6mm glass	45.3007	45.3010			45.3009	P
F22-9-2	82.6mm glass	38.8331	38.8334			38.8333	P
F22-9-3	82.6mm glass	37.5652	37.5654			37.5653	P
F22-9-4	82.6mm glass	38.3011	38.3012 35.3736			38.3012	P
F22-9-5	82.6mm glass	35.3736	35.3736			35.3736	P
F22-9-6 F22-9-7	82.6mm glass	33.8569 34.6317	33.8569			33.8569 34.6316	P P
F22-9-7 F22-9-8	82.6mm glass						P P
	82.6mm glass	30.5691	30.5693			30.5692	
F22-9-9	82.6mm glass	30.3948	30.3951			30.3950	P P
F22-9-10	82.6mm glass	34.5760	34.5762			34.5761	Р
	Cal Check	29.9990	29.9990				
Comments:	athadı 🖬	Docioanter		Other			
Drying M	ethod: 🗹	Desiccator	Oven 🗳	Other:			
	_						
Completed	By:				Date:		

Filter Tare Weights

		Le e Tra		Date In	to Dryer:	10/05/22	
	Filter	LogIn			to Dryer:	14:45	
_	-						
	alyst	A. VanSickle	A. VanSickle	A. VanSickle			
	Date	10/06/22	10/10/22	10/11/22			
	(24 hr)	14:55	12:00	12:30			
	Temp, °F	70	64	70			
	e Humidity	54 %	54 %	58 %			
Cal W	eight (g)	30	30	30			
Initial	Cal Check	29.9991	29.9991	29.9990		Decimals:	4
Filter No.	Туре	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
F22-10-1	82.6mm glass	31.8870	31.8868	31.8868		31.8868	Р
F22-10-2	82.6mm glass	32.4212	32.4201	32.4202		32.4202	Р
F22-10-3	82.6mm glass	43.7019	43.7014	43.7016		43.7015	Р
F22-10-4	82.6mm glass	42.3161	42.3161	42.3160		42.3161	Р
F22-10-5	82.6mm glass	41.3842	41.3842	41.3837		41.3840	Р
F22-10-6	82.6mm glass	36.9454	36.9454	36.9455		36.9455	Р
F22-10-7	82.6mm glass	33.8759	33.8758	33.8762		33.8760	Р
F22-10-8	82.6mm glass	30.4432	30.4430	30.4434		30.4432	Р
F22-10-9	82.6mm glass	31.1834	31.1830	31.1825		31.1828	Р
F22-10-10	82.6mm glass	36.2564	36.2565	36.2560		36.2563	Р
F22-10-11	82.6mm glass	32.6084	32.6084	32.6084		32.6084	Р
F22-10-12	82.6mm glass	32.5784	32.5782	32.5782		32.5782	Р
F22-10-13	82.6mm glass	30.1311	30.1307	30.1311		30.1309	Р
F22-10-14	82.6mm glass	30.8198	30.8198	30.8198		30.8198	Р
F22-10-15	82.6mm glass	33.7245	33.7244	33.7245		33.7245	Р
F22-10-16	82.6mm glass	37.0475	37.0466	37.0468		37.0467	Р
F22-10-17	82.6mm glass	35.0316	35.0315	35.0315		35.0315	Р
F22-10-18	82.6mm glass	31.7286	31.7277	31.7273		31.7275	Р
F22-10-19	82.6mm glass	44.8298	44.8291	44.8295		44.8293	Р
F22-10-20	82.6mm glass	34.8711	34.8711	34.8711		34.8711	Р
F22-10-21	82.6mm glass	32.0230	32.0233	32.0232		32.0233	Р
F22-10-22	82.6mm glass	34.7828	34.7827	34.7822		34.7825	Р
F22-10-23	82.6mm glass	33.1028	33.1029	33.1026		33.1028	Р
F22-10-24	82.6mm glass	37.0462	37.0458	37.0461		37.0460	Р
Final C	Cal Check	29.9991	29.9992	29.9990			
Comments:							
Drying M	ethod:	Desiccator	Oven 🛛	Other:			

Completed By:

Date:

Filter Tare Weights

	2 14	T		Date In	to Dryer:	07/17/23	
	Filter	Login			to Dryer:	15:00	
A							
	nalyst Date	L. Hooper 07/18/23	A. VanSickle				
	(24 hr)	15:00	07/19/23 9:45				
	Temp, °F	75	78				
	e Humidity	54 %	60 %				
	eight (g)	30	30				
	Cal Check	29.9990	29.9990			Decimals:	Л
Filter No.	Туре	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Average (g)	P/F
F23-7-1	82.6mm glass	37.3182	37.3181			37.3182	Р
F23-7-2	82.6mm glass	29.3093	29.3092			29.3093	P
F23-7-3	82.6mm glass	33.9994	33.9993			33.9994	P
F23-7-4	82.6mm glass	36.1616	36.1616			36.1616	P
F23-7-5	82.6mm glass	27.8962	27.8960			27.8961	P
F23-7-6	82.6mm glass	29.4939	29.4938			29.4939	Р
F23-7-7	82.6mm glass	38.8690	38.8690			38.8690	Р
F23-7-8	82.6mm glass	46.0553	46.0555			46.0554	Р
F23-7-9	82.6mm glass	32.3298	32.3299			32.3299	Р
F23-7-10	82.6mm glass	37.1143	37.1142			37.1143	P
F23-7-11	82.6mm glass	41.1322	41.1322			41.1322	P
F23-7-12	82.6mm glass	30.9107	30.9108			30.9108	Р
	Cal Check	29.9990	29.9991				
Comments:		Desisoration		Other			
Drying M	lethod:	Desiccator	Oven 🖵	Other:			
Completed By: Date:							
-	-						

APPENDIX E

EQUIPMENT CALIBRATIONS

TECHNOLOGIES INC.

Project
Test Dates

Rain LLC

Project No.

4173

7/20/2023

Project Manager

T. Pittman

	Nozzle								
ID	Diameter	ID	Diameter						
Q213	0.440								
Q242	0.365								
Q234	0.376								
Q264	0.388								
Q261	0.396								

Probe and Pitot Assemblies				
Probe ID	T/C ID			
5-5	S-2	68-3		

Sample Train Thermocouples

FPF	TRAP/CPF	SG
FPF-6	CPF-4	20
FPF-5	CPF-9	21
FPF-9	CPF-7	22
FPF-8	CPF-3	26
FPF-1	CPF-6	29

Umbilicals

U200-1	
Barometers	5
Barometers B24	\$
	\$

Method 5 Consoles

Console No.	Avg. ΔH
1	1.763

Method 6/VOST Consoles

Console No.	Flow Rate

Include Balance Calibration Comments

Special/Other Equipment

Equipment Problems/Changes/Notes (Copied from all Field Data Sheets)

NA1821-007-041823-CTR

Mettler Toledo, LLC

Report ID:

1900 Polaris Parkway Columbus, OH 43240 1.800.METTLER

Comprehensive Test Report

Customer

le
< -

Weighing Device

Floor:	N/A	Terminal Asset No.: Alternate Asset No.:	N/A	
-	1	I erminal Asset No.:		
• -	1	— • • • • • • •	NA	
Building: Main		Terminal Serial No.:	B427775532	
Serial No.:	B427775532	Terminal Model:	PEAT	
Model:	XPE205	Asset Number:	N/A	
Manufacturer:	Mettler Toledo	Instrument Type:	Weighing Instrument	

range	Max. Oapaony	
1	220 g	0.00001 g

Procedure

Guideline:	EURAMET cg-18 v. 4.0 (11/2015)
METTLER TOLEDO Work Instruction:	30260953 v1.61

This report contains measurements for As Found and As Left testing.

The sensitivity/span of the weighing instrument was adjusted before As Left testing with a built-in weight.

In accordance with EURAMET cg-18 (11/2015), the test loads were selected to reflect the specific use of the weighing device or to accommodate specific test conditions.

As Found Testing Date:	18-Apr-2023	Service Technician:	alphil
As Left Testing Date:	18-Apr-2023		cip vice
Issue Date:	18-Apr-2023		Alex Rickert
Next Testing Date:	30-Apr-2024		

Measurement Results

Eccentricity

Eccentricity Test Load: 100 g					
Position	As Found	As Left			
1	0.00000 g	0.00000 g			
2	0.00015 g	0.00017 g			
3	0.00000 g	0.00000 g			
4	-0.00020 g	-0.00016 g			
5	-0.00009 g	-0.00004 g			
Maximum Deviation	0.00020 g	0.00017 g			

Error of Indication

				As Found		Left
	Tare Load	Reference Value	Indication	Error of Indication	Indication	Error of Indication
1	N/A	0.00000 g	0.00000 g	0.00000 g	0.00000 g	0.00000 g
2	N/A	50.00003 g	49.99997 g	-0.00006 g	50.00005 g	0.00002 g
3	50 g	50.00003 g	49.99995 g	-0.00008 g	50.00004 g	0.00001 g
4	100 g	50.00003 g	49.99996 g	-0.00007 g	50.00005 g	0.00002 g
5	150 g	50.00003 g	49.99993 g	-0.00010 g	50.00002 g	-0.00001 g
6	N/A	100.00001 g	99.99996 g	-0.00005 g	100.00013 g	0.00012 g
7	N/A	150.00004 g	149.99996 g	-0.00008 g	150.00018 g	0.00014 g
8	N/A	199.99995 g	199.99955 g	-0.00040 g	199.99986 g	-0.00009 g

Test Equipment

All weights used for metrological testing are traceable to national or international standards. The weights were calibrated and certified by an accredited calibration laboratory.

Weight Set 1: OIML E2					
Weight Set No.:	480	Date of Issue:	07-Sep-2022		
Certificate Number:	220609555	Calibration Due Date:	30-Sep-2023		

Remarks

Equipment condition: Good

Next calibration according to customer's procedure

Service adjustments were applied to balance.

This document is issued to record completion of the work performed by METTLER TOLEDO on the subject device in accordance with agreed standards. It does not guarantee the continued performance of the subject device. Any measurements recorded are based on the subject device's performance at a given time as tested by METTLER TOLEDO and, except where explicitly stated otherwise, do not express an opinion as to the sufficiency of any customer designed procedures used to test the device. This document is not a warranty, either implied or express. METTLER TOLEDO expressly disclaims any liability arising from the use of the information in this document for any purpose other than as specified herein.

Attachment to Test Report: Electronic Filing: Received, Clerk's Office 03/15/2024DO Service

NA1821-007-041823-CTR

Manufacturer Tolerance Assessment

Manufacturer Tolerance Assessment

Assessment done without considering measurement uncertainty.

The measurements from the attached test report were assessed against METTLER TOLEDO tolerances defined in the SOP 'Test and Measurement Procedures for METTLER TOLEDO balances', Document: 10000018502.

Measurement Results

Repeatability

Eccentricity

Test Load: 100	Test Load: 100 g							
Position	As Found	As Left						
1	0.00000 g	0.00000 g						
2	0.00015 g	0.00017 g						
3	0.00000 g	0.00000 g						
4	-0.00020 g	-0.00016 g						
5	-0.00009 g	-0.00004 g						
Maximum Deviation	0.00020 g	0.00017 g						
Tolerance	0.000200 g 🗸 🗸	0.000200 g 🗸 🗸						

The maximum deviation is determined as the absolute value of the largest deviation from the center.

Attachment to Test Report: Electronic Filing: Received, Clerk's Office 03/15/2024DO Service

NA1821-007-041823-CTR

Manufacturer Tolerance Assessment

Linearity - Differential Method

	Preload	Reference Value	Indication	Deviation
2	N/A	50.00003 g	49.99997 g	0.000018 g
3	50 g	50.00003 g	49.99995 g	0.000015 g
4	100 g	50.00003 g	49.99996 g	0.000023 g
5	150 g	50.00003 g	49.99993 g	0.000000 g
8	N/A	199.99995 g	199.99955 g	N/A

Linearity Deviation	0.000023 g	Sensitivity Deviation	0.00040 g
Linearity Tolerance	0.0001 g 🗹	Sensitivity Tolerance	N/A

The As Found Sensitivity Tolerance is only valid if the device has been adjusted before the test.

As Left

	Preload	Reference Value	Indication	Deviation
2	N/A	50.00003 g	50.00005 g	0.000010 g
3	50 g	50.00003 g	50.00004 g	0.000010 g
4	100 g	50.00003 g	50.00005 g	0.000020 g
5	150 g	50.00003 g	50.00002 g	0.000000 g
8*	N/A	199.99995 g	199.99986 g	N/A

Linearity Deviation	0.000020 g	Sensitivity Deviation	0.00009 g
Linearity Tolerance	0.0001 g 🗹	Sensitivity Tolerance	0.0005 g 🗸 🗸

The values in column "Deviation" and the "Linearity Deviation" are zero point offset and sensitivity error compensated.

* This point was used to satisfy the sensitivity requirement.

Electronic Filing: Received, Clerk's Office 03/15/2024 Certification of Calibration

Kansas City Calibration Lab., Inc.

8847 Long Street Lenexa, Kansas 66215

Telephone: (913) 541-0629 Internet: www.kccl.com Email: service@kccl.com

UNIT UNDER TEST: SERIAL NUMBER: ASSET NUMBER: PROCEDURE NAME: PROCEDURE REV.: CALIBRATED BY:	Omega CL23A Calibrator-Thermometer K-J-T T-263302 T-263302 12 Months NIST Certification Met Temp Bart Schwartz	TEST RESULT: PERFORMED ON: DATA TYPE: TEMPERATURE: HUMIDITY:	PASS 12/30/2022 FOUND-LEFT 24.4°C 45 %
P.O. NUMBER: CUSTOMER: Cal Seals Intact:	AirSource Technologies 20505 W. 67th Street Shawnee, KS 66218 Yes	Recertification D December 30, 2023 Certification Number: Previous Certification I December 13, 2021	00075443 Date:

K.C. Calibration Lab., Inc. certifies that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). This calibration is traceable to the International System of Units (SI), throught National Metrology Institutes (NIST, PTB NRC NPL, etc), ratiometric techniques, or natural physical constants. This calibration complies with MIL-STD-45662A and ANSI/NCSL Z540-1-1994.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the calibration organization issuing this report.

Note: Any Test Uncertainty Ratio (TUR) that is less than four to one will appear under the "TUR" heading on the data record. If the TUR meets or exceeds four to one, the field is left blank.

REMARKS:

Asset #		Description			<u>Cal Date</u>	Due Date
2659119			Single Chan Reference		1/4/2022	1/4/2023
905040		Burns Engineering 5	615 Platinum Resistan	ce Thermometer	2/3/2022	2/3/2023
DW518		Fluke 518 Dry-Block	k Calibrator		9/5/2022	9/5/2023
Test Results	1.1.1			and see Service	A. S. Sandara	
Nominal Set-point		Actual Value (Reference)	UUT (Test Sensor)	Error	Measurement Uncertainty	Method of Realization
Accuracy $\pm 0.5 > 50$ F, \pm	0.04% Rdg	>1250 F, ±1.0 F <50 F				
32.00	F	32.33	32.50	0.17		
72.00	F	72.55	72.10	-0.45		a second second
212.00	F	211.98	210.60	-1.38		1.00
600.00	F	600.05	595.70	-4.35		2.05
1200.0	F	1200.1	1193.33	-6.77	and the second second	

Report of Certification for

SERIAL NUMBER: T-263302

ASSET

ASSET NUMBER: T-263302

Printed On:

Friday, December 30, 2022 Calibration Services Since 1962 <u>Test Results</u> indicate the following: Found-Left: Unit was left as <u>found</u>. As-Left: Unit was left after <u>adjustments</u>.

TEC	HNOLOGIES,		Noza	zle Cali	bratior	n Data	
Project	Rain Carbo	on M5202	2'23	Pro	ject No.	4173]
Nozzle Number	Туре	D ₁	D ₂	D ₃	D _n	Calibrated by	Date
Q213	Quartz	0.440	0.440	0.440	0.440	FLS	10/03/00
Q242	Quartz	0.364	0.365	0.365	0.365	KRM	12/29/22
Q234	Quartz	0.376	0.376	0.376	0.376	JSS	08/11/06
Q264	Quartz	0.389	0.387	0.387	0.388	KRM	01/03/23
Q261	Quartz	0.396	0.396	0.397	0.396	KRM	01/03/23

Appendix E-1

Pre-Test Calibrations

Barometer Calibration

Barometer No.	B24	Reference	Mercury No. 1		
Performed By	Lex Hooper	Date	05/10/23		
	Mercury Reference	Baromete	r		
M	ercury Barometer Reading	In. Hg	29.29		
	Room Temperature	°F	78		
	Temperature Correction	In. Hg	-0.131		
	Latitude	° N or S	39		
	Gravity Correction	In. Hg	-0.017		
	Corrected Reading	In. Hg	29.14		
	Test Barometer				
	Test Barometer Reading In. Hg				
	Error	In. Hg	0.02		
	Error ≤ 0.2 In.	Pass/Fail	PASS		
	Comment	S			

Performed by: Ley Hoopen

TARSOURGE Filing: Received, ClerREODE ASSER/D12/4Calibration (Type-S Pitot TC)

				V JI	511101	- /
Performed By L. Hooper]		Probe ID	5-	5	
Date 5/26/23	5/26/23 Pitot IE				2	
		Thern	nocouple ID	68	-3	
Ditat Tube accombly loyal2 (obe Pitot		Ye		
Pitot Tube assembly level? (ye Pitot Tube openings damaged		ves - comment be	elow)	Ne Ne		
		J			·	
	A (no crite	eria)	in.	0.890		
		" Recommended)	in.	0.370		
$\begin{array}{c} \bullet \bullet \bullet B \\ \hline \bullet \bullet \bullet \end{array} \begin{array}{c} \bullet \bullet \\ \hline \bullet \bullet \bullet \end{array} \begin{array}{c} \bullet \bullet \\ \hline \bullet \bullet \\ \hline \bullet \bullet \\ \hline \bullet \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \hline \end{array} \begin{array}{c} \bullet \\ \end{array} \begin{array}{c} \bullet \\ \bullet $		< 1.05 D _t)	in.	0.450	PASS	
P _B (1	$.05 D_t < P_B$	< 1.05 D _t)	in.	0.420	PASS	
		θ	deg.	0.5		
		A sin (θ)	in.	0.555	D. C.C.	
	ω (ω < 0.032")			0.008	PASS	
			dog	2 5		
		γ	deg.	2.5		
		A sin (g) < 0.125")	in.	0.039	PASS	
		< 0.123)		0.037	17100	
······································	α1 (0	$u_1 < 10^{\circ}$)	deg.	4.0	PASS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\alpha_2 ~(\alpha_2 < 10^{\circ})$		deg.	4.5	PASS	
$(A) \xrightarrow{*}_{\alpha} \xrightarrow{*}_{\beta_1}$	β ₁ ($\beta_1 \ (\beta_1 < 5^{\circ})$		1.5	PASS	
	$\beta_2 \ (\beta_2 < 5^0)$		deg.	1.0	PASS	
Stad	ck Therm	oCouple Ca	libration			
Reference TC ID		FPTC-10)/CL23A#2			
Heat Source	Ĵ	Stack TC ^O F	Ref. TC ^O F	Difference		
Ambient Air				0.3		
	Ambient Air69.5Ice Water Bath34.7			0.3		
Stack TC	Ice Water Bath 34.7 35 Stack TC - Reference TC _{max} < 2.0 °F					
St	Stack TC Pass/Fail					
	Co	omments				

Performed by Ley Hoopen

Umbilical Hookup Check-Out

Performed By	looper	F	Reference TC	FPTC-10/CL2	:3A #2
Hookup No. 20		TC No.	20	Date	06/26/23
Check-Out Procedure		Themocoupl	le Calibratior	<u>่</u>	
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	33.7	33.9	0.2	PASS
	i	TONE			01/01/00
Hookup No. 21	I	TC No.	21	Date	06/26/23
Check-Out Procedure			e Calibratior		
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	33.7	33.9	0.2	PASS
				•••••	
Hookup No. 22	I	TC No.	22	Date	06/26/23
Check-Out Procedure		Themocoupl	le Calibratior	۱	
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	33.8	33.9	0.1	PASS
	k				31/0/ JOD
Hookup No. 26	l	TC No.	26	Date	06/26/23
Check-Out Procedure			e Calibratior	1	
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	33.8	33.9	0.1	PASS
Hookup No. 29		TC No.	29	Date	05/10/23
Check-Out Procedure			e Calibratior		
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" ∆H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	32.3	32.3	0.0	PASS
		Comments			

Performed by _____

Filterable Particulate Filter TC

	Performed By L. H	looper		Reference TC	FPTC-10/CL2	23A #2	
	Themocouple Calibration						
	Date 05/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
	FPM TC ID 1	Ambient Air	69.8	69.3	0.5	PASS	
		Ice Water Bath	32.4	32.2	0.2	PASS	
			Themocoup	le Calibratior	l		
	Date 05/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
	FPM TC ID 5	Ambient Air	70.1	69.3	0.8	PASS	
		Ice Water Bath	32.3	32.2	0.1	PASS	
			Themocoup	le Calibratior	1		
	Date 05/25/23	Source	FPM TC	Reference	Difference	Difference	
		Course	Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F	
	FPM TC ID 6	Ambient Air	69.8	69.3	0.5	PASS	
		Ice Water Bath	32.4	32.3	0.1	PASS	
			Themocoup	le Calibratior	l		
	Date 05/25/23	Source	FPM TC	Reference	Difference	Difference	
		Source	Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F	
	FPM TC ID 8	Ambient Air	70.0	69.3	0.7	PASS	
		Ice Water Bath	32.5	32.3	0.2	PASS	
		_	Themocoup	le Calibratior	l		
	Date 05/02/23	Source	FPM TC	Reference	Difference	Difference	
_		Source	Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F	
	FPM TC ID 9	Ambient Air	61.5	61.1	0.4	PASS	
		Ice Water Bath	32.8	32.7	0.1	PASS	
		Co	mments				

Performed by Ley Hoopen

Condensable Particulate Filter TC

	Performed By L.	Hooper	Reference TC FPTC-10/CL23A #2			
	Themocouple Calibration					
_	Date 05/02/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F
	CPF TC ID CPF 3	Ambient Air	61.8	61.1	0.7	PASS
		Ice Water Bath	27.8	32.7	4.9	PASS
			Themocoup	le Calibration	า	
	Date 05/02/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F
ſ	CPF TC ID CPF 4	Ambient Air	61.6	61.1	0.5	PASS
		Ice Water Bath	32.3	32.7	0.4	PASS
			Themocoup	le Calibratior	า	
	Date 12/08/22	Source	FPM TC	Reference	Difference	Difference
			Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F
	CPF TC ID CPF 6	Ambient Air	63.9	64.1	0.2	PASS
		Ice Water Bath	33.9	34.4	0.5	PASS
			Themocoup	le Calibratior	า	
	Date 05/10/23	Source	FPM TC	Reference	Difference	Difference
			Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F
	CPF TC ID CPF 7	Ambient Air	85.7	85.8	0.1	PASS
		Ice Water Bath	32.7	32.3	0.4	PASS
			Themocoup	le Calibration	า	
	Date 10/05/22	Source	FPM TC	Reference	Difference	Difference
			Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F
	CPF TC ID CPF 9	Ambient Air	68.6	68.7	0.1	PASS
		Ice Water Bath	32.5	33.1	0.6	PASS
╞			mments			

Performed by Ley Hooper

Filing: Received, Clerk's Of Boot Partien

Console #	1	Performed By L. Hooper						
Previous Y	1.004		Date 5/22/2023					
	DR	Y GAS METI	ER VOLUME	CALIBRATIC	ON			
Leak Checks Inlet thru Pu	ump (Front)	Pass	Pu	mp to Orifice (I	Back)	Pass		
PARAN			RUN 1	RUN 2	,			
Orifice Numbe		UNIT		RUN 2	BRACK 15	16		
K Factor	1			229	0.4163	0.5608		
Inital DGM Vol	lume	cf	585.100	610.000	573.300	598.000		
Final DGM Vol		cf	590.100	615.000	578.300	603.000		
Net DGM Volu		cf	5.000	5.000	5.000	5.000		
Initial DGM In		°F	72.0	74.0	69.0	73.0		
Initial DGM Ou		°F	72.0	74.0	70.0	73.0		
Final DGM Inle		°F	72.0	75.0	70.0	74.0		
Final DGM Out		°F	72.0	75.0	70.0	74.0		
Average DGM		°F	72.0	74.5	69.8	73.5		
Initial Room T		°F	68.0	74.0	68.0	73.0		
Final Room Te	emp.	°F	69.0	74.0	68.0	73.0		
Average Room	n Temp.	° F	68.5	74.0	68.0	73.0		
		m:ss	7:25	7:27	9:13	7:02		
Time		sec	445	447	553	422		
Orifice ∆H		in. H ₂ O	1.50	1.50	0.92	1.70		
Barometric Pre	essure	in. Hg	29.31	29.21	29.31	29.22		
Pump Vacuum	l	in. Hg	22	22	23	22		
Vcr (std)		dscf	4.946	4.926	4.896	4.994		
Vm (std)		dscf	4.880	4.841	4.894	4.854		
Y			1.013	1.017	1.000	1.029		
∆H@			1.873	1.927	1.778	1.942		
Error From Av	erage Y	%	0.20	-0.20	1.49	-1.31		
+/- 2% Criteri	а		PASS	PASS	PASS	PASS		
		Average Y		1.015				
		Average ∆ł	1@	1.900				
		Error From	Initial Y	1.14%				
		+/- 5% Crit	eria	PASS				
	DRY GA	S METER T	HERMOCOL	JPLE CALIBR	ATION			
Thermoo	ouple ID	Console		Reference ID	FPTC-10/0	CL23A #2		
DGM TC	Heat Source		DGM TC ^O F	Ref. TC ^O F		Difference		
	Ambier	nt Air	67.0	68.8		1.8		
Inlet	Hot Wate	er Bath	204.0	204.5		0.5		
Outlet	Ambier		67.0	68.8		1.8		
	Hot Wate		204.0	204.5		0.5		
	DGM		nce TC _{max} < :	5.4 o F		1.8		
		DGM TC	Pass/Fail			PASS		

Appendix E-2

Post-Test Calibrations

Barometer Calibration

Barome	eter No.	B24	F	Reference	Mercury No. 1
Perfor	med By	Lex Hooper		Date	07/27/23
		Mercury Refer	rence	Baromete	r
Г	M	ercury Barometer Re	ading	In. Hg	29.20
		Room Tempe	rature	°F	78
		Temperature Corr	ection	In. Hg	-0.130
		La	titude	° N or S	39
		Gravity Corr	ection	In. Hg	-0.017
		Corrected Re	eading	In. Hg	29.05
		Test B	arome	ter	
		Test Barometer Re	eading	In. Hg	29.07
			Error	In. Hg	0.02
		Error ≤	0.2 In.	Pass/Fail	PASS
Г		Com	ment	S	

Performed by: Ley Hoopen

TARSOURGE Filing: Received, ClerREODE ASSER/D12/4Calibration (Type-S Pitot TC)

					511101	- /
Performed By L. Hooper			Probe ID	5-	5	
Date 7/27/23			Pitot ID	S-	2	
		Thern	nocouple ID	68	-3	
		obe Pitot				
Pitot Tube assembly level? (yes				Ye		
Pitot Tube openings damaged	? (yes/no, if	yes - comment be	elow)	N	0	
	A (no crite	eria)	in.	0.900		
D_{t} (0.188	8" < D _t < 0.375	" Recommended)	in.	0.370		
A B A P_A (1.	$05 D_t < P_A$	< 1.05 D _t)	in.	0.480	PASS	
P _B (1.	$05 D_t < P_B$	< 1.05 D _t)	in.	0.430	PASS	
 + + 0						
		θ	deg.	0.5		
	$\omega = I$	A sin (θ)				
	ω (ω	< 0.032")	in.	0.008	PASS	
		γ	deg.	2.0		
		A sin (g)				
i	Z (Z -	< 0.125")	in.	0.031	PASS	
	α1 (α	ι ₁ < 10 ⁰)	deg.	2.5	PASS	
$\left[\begin{array}{c} T_{B} T - r^{\alpha_{1}} \\ B \end{array} \right] \left[\begin{array}{c} B \\ B \end{array} \right] \left[\begin{array}{c} B \\ B \\ \end{array} \\ \\[\begin{array}{c} B \\ \end{array} \\ \\[\begin{array}{c} B \\ \end{array} \\[\begin{array}{c} B \\ \end{array} \\[\end{array} \\[\begin{array}{c} B \\ \end{array} \\[\end{array} \\[\begin{array}{c} B \\ \end{array} \\[\end{array} \\[\\[\end{array} \\[\end{array} \\[\end{array} \\[\end{array} \\[\\[\end{array} \\[\end{array} \\[\end{array} \\[\\[\\[\end{array} \\[\\[\\ \\[\end{array} \\[\\[\\[\end{array} \\[\\[\\ \\[\\] \\[\\[\\ \\[\\$	α_2 (a	α ₂ < 10 ⁰)	deg.	3.0	PASS	
$(A) \rightarrow a$	ß1 (β ₁ < 5 ⁰)	deg.	1.5	PASS	
	β ₂ ($\beta_2 < 5^0$)	deg.	2.0	PASS	
Star		oCouple Ca	libration			
Reference TC ID)/CL23A#2			
Heat Source	, ,	Stack TC ^O F		Difference		
Ambient Air Ice Water Bat	h	77.7 33.1	77.8 33.0	0.1 0.1		
	Stack TC - Reference TC $ _{max}$ < 2.0 °F					
Sta	0.1 PASS					
	C	omments				
•						

Performed by Ley Hoopen

Umbilical Hookup Check-Out

Performed By	looper		Reference TC	FPTC-10/CL2	23A #2
Hookup No. 20		TC No.	20	Date	07/25/23
Check-Out Procedure		Themocoupl	le Calibration	า	
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	32.5	32.0	0.5	PASS
Hookup No. 21		TC No.	21	Date	07/25/23
Check-Out Procedure			le Calibratior		
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" ∆H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	32.4	32.0	0.4	PASS
Lissian Na 20			22	Data	07/05/00
Hookup No. 22		TC No.	22	Date	07/25/23
Check-Out Procedure			e Calibration		
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	33.0	32.0	1.0	PASS
Hookup No. 26		TC No.	26	Date	07/25/23
Check-Out Procedure	-	Themocoupl	le Calibration	า	
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	31.8	32.0	0.2	PASS
Hookup No. 29		TC No.	29	Date	07/24/23
Check-Out Procedure			e Calibration		
Leak Check	Yes	Hookup T/C	Reference	Difference	Difference
Flow Check (>4" Δ H)	Yes	Temp. (°F)	Temp. (°F)	(°F)	< 2.0 °F
Check Valve Operational	Yes	32.7	32.3	0.4	PASS
		Comments			

Performed by _____

Filterable Particulate Filter TC

	Performed By L.	Hooper		Reference TC	FPTC-10/CL2	23A #2	
	Themocouple Calibration						
	Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
	FPM TC ID 1	Ambient Air	73.5	73.5	0.0	PASS	
		Ice Water Bath	32.5	32.3	0.2	PASS	
			Themocoup	le Calibratior	ı		
	Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
Ιſ	FPM TC ID 5	Ambient Air	73.7	73.5	0.2	PASS	
	<u> </u>	Ice Water Bath	32.5	32.3	0.2	PASS	
			Themocoup	le Calibratior	า		
	Date 07/24/23	Source	FPM TC	Reference	Difference	Difference	
		Source	Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F	
	FPM TC ID 6	Ambient Air	73.3	73.5	0.2	PASS	
		Ice Water Bath	32.4	32.3	0.1	PASS	
			Themocoup	le Calibration	l		
	Date 07/24/23	Source	FPM TC	Reference	Difference	Difference	
		Cource	Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F	
	FPM TC ID 8	Ambient Air	73.6	73.5	0.1	PASS	
		Ice Water Bath	32.4	32.3	0.1	PASS	
			Themocoup	le Calibration	l		
	Date 07/24/23	Source	FPM TC	Reference	Difference	Difference	
		Source	Temp. (°F)	Temp. (°F)	(°F)	< 5.4 °F	
	FPM TC ID 9	Ambient Air	73.3	73.5	0.2	PASS	
		Ice Water Bath	32.5	32.3	0.2	PASS	
╽╽		Co	omments				
╎╎							

Performed by Ley Hoopen

Condensable Particulate Filter TC

Performed By L. H	ooper	I	Reference TC	FPTC-10/CL2	3A #2	
Themocouple Calibration						
Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
CPF TC ID CPF 3	Ambient Air	73.3	73.5	0.2	PASS	
	Ice Water Bath	32.5	32.3	0.2	PASS	
		Themocoup	e Calibratior	ו		
Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
CPF TC ID CPF 4	Ambient Air	73.3	73.5	0.2	PASS	
	Ice Water Bath	32.6	32.3	0.3	PASS	
		Themocoup	e Calibratior	ו		
Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
CPF TC ID CPF 6	Ambient Air	73.3	73.5	0.2	PASS	
	Ice Water Bath	32.4	32.3	0.1	PASS	
		Themocoup	e Calibratior	l		
Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
CPF TC ID CPF 7	Ambient Air	73.2	73.5	0.3	PASS	
	Ice Water Bath	32.4	32.3	0.1	PASS	
		Themocoup	e Calibratior	า		
Date 07/24/23	Source	FPM TC Temp. (°F)	Reference Temp. (°F)	Difference (°F)	Difference < 5.4 °F	
CPF TC ID CPF 9	Ambient Air	73.2	73.5	0.3	PASS	
	Ice Water Bath	32.2	32.3	0.1	PASS	
Comments						

Performed by Ley Hoopen

ARSOLORGE Filing: Received, Clerk's Of Boot Partion

Console # 1	Performed By L. Hooper				
Previous Y 1.015	Ī	Date 7/27/2023			
	-				-
DR Leak Checks	Y GAS MET	er volume	CALIBRATIC	ON	
Inlet thru Pump (Front)	Pass	Pu	mp to Orifice (I	Back)	Pass
PARAMETER	UNIT	RUN 1	RUN 2	BRACK	FTING
Orifice Number		_	6	7	1
K Factor		0.5	608	0.6381	0.5229
Inital DGM Volume	cf	884.000	889.500	897.000	621.500
Final DGM Volume	cf	889.000	894.500	902.000	626.500
Net DGM Volume	cf	5.000	5.000	5.000	5.000
Initial DGM Inlet Temp.	°F	84.0	84.0	86.0	86.0
Initial DGM Outlet Temp.	°F	84.0	84.0	86.0	86.0
Final DGM Inlet Temp.	°F	84.0	85.0	86.0	86.0
Final DGM Outlet Temp.	° F	84.0	85.0	86.0	86.0
Average DGM Temp.	°F	84.0	84.5	86.0	86.0
Initial Room Temp.	°F	79.0	79.0	80.0	80.0
Final Room Temp.	° F	79.0	80.0	80.0	80.0
Average Room Temp.	° F	79.0	79.5	80.0	80.0
Time	m:ss	6:59	6:58	6:00	7:24
Time	sec	419	418	360	444
Orifice ∆H	in. H ₂ O	1.70	1.70	2.20	1.50
Barometric Pressure	in. Hg	29.06	29.06	29.06	29.06
Pump Vacuum	in. Hg	21	21	20	22
Vcr (std)	dscf	4.903	4.889	4.789	4.840
Vm (std)	dscf	4.734	4.730	4.723	4.715
Y		1.036	1.034	1.014	1.027
ΔH@		1.931	1.923	1.845	1.913
Error From Average Y	%	-0.10	0.10	2.00	0.78
+/- 2% Criteria		PASS	PASS	PASS	PASS
	Average Y		1.035		
	Average ∆	H@	1.927		
	Error From		1.94%		
	+/- 5% Crit		PASS		
DRY G			JPLE CALIBR	ATION	
Thermocouple ID	Console		Reference ID	FPTC-10/	CL23A #2
DGM TC Heat Source	•	DGM TC ^O F			Difference
Ambie	nt Air	74.0	76.5		2.5
Inlet Hot Wat		209.0	208.3		0.7
Ambie		74.0	76.5		2.5
Outlet Hot Wat		209.0	208.3		0.7
DGN	1 TC - Referer	nce TC _{max} < {			2.5
	DGM TC	Pass/Fail			PASS

APPENDIX F

PROCESS DATA

Robinson - Kiln 1 - Start-up Engineering Study Operating Dat						
	Pyroscrubber Inlet Pyros					
		Temperature	Temperature			
	Feedrate	A Thermocouple	B Thermocouple			
Date/Time	(Tons Per Hour)	(Degrees F)	(Degrees F)			
7/20/23 9:01	0	582	552			
7/20/23 9:02	0	581	551			
7/20/23 9:03	0	582	552			
7/20/23 9:04	0	585	555			
7/20/23 9:05	0	588	559			
7/20/23 9:06	0	590	561			
7/20/23 9:07	0	590	561			
7/20/23 9:08	0	590	560			
7/20/23 9:09	0	590	560			
7/20/23 9:10	0	589	559			
7/20/23 9:10	0	588	558			
7/20/23 9:11	0	585	555			
7/20/23 9:12	0	584	553			
7/20/23 9:13	0	582	550			
7/20/23 9:14	0	579	548			
7/20/23 9:15	0	579	550			
7/20/23 9:10	0	582	553			
	0	587	558			
7/20/23 9:18						
7/20/23 9:19	0	589	558			
7/20/23 9:20	0	587	556			
7/20/23 9:21	0	588	558			
7/20/23 9:22	0	588	558			
7/20/23 9:23	0	588	558			
7/20/23 9:24	0	589	558			
7/20/23 9:25	0	587	556			
7/20/23 9:26	0	586	555			
7/20/23 9:27	0	585	554			
7/20/23 9:28	0	584	554			
7/20/23 9:29	0	586	556			
7/20/23 9:30	0	590	561			
7/20/23 9:31	0	592	563			
7/20/23 9:32	0	593	564			
7/20/23 9:33	0	593	562			
7/20/23 9:34	0	592	561			
7/20/23 9:35	0	590	559			
7/20/23 9:36	0	588	556			
7/20/23 9:37	0	586	555			
7/20/23 9:38	0	585	554			
7/20/23 9:39	0	586	556			
7/20/23 9:40	0	584	553			
7/20/23 9:41	0	583	554			
7/20/23 9:42	0	587	559			
7/20/23 9:43	0	591	562			

7/20/22 0.44	0	F01	FC2
7/20/23 9:44	0	591	562
7/20/23 9:45	0	591	561
7/20/23 9:46	6	589	559
7/20/23 9:47	6	586	556
7/20/23 9:48	6	586	557
7/20/23 9:49	6	585	555
7/20/23 9:50	6	585	555
7/20/23 9:51	6	587	557
7/20/23 9:52	6	590	560
7/20/23 9:53	6	594	564
7/20/23 9:54	6	598	570
7/20/23 9:55	6	601	573
7/20/23 9:56	6	609	580
7/20/23 9:57	6	618	590
7/20/23 9:58	6	627	600
7/20/23 9:59	6	637	610
7/20/23 10:00	6	646	619
7/20/23 10:01	6	657	631
7/20/23 10:02	6	668	641
7/20/23 10:03	6	679	652
7/20/23 10:04	6	689	660
7/20/23 10:05	6	699	669
7/20/23 10:06	6	706	677
7/20/23 10:07	6	713	683
7/20/23 10:08	6	720	690
7/20/23 10:09	6	725	696
7/20/23 10:10	6	728	698
7/20/23 10:11	6	731	701
7/20/23 10:12	6	735	704
7/20/23 10:13	6	740	709
7/20/23 10:14	6	744	713
7/20/23 10:15	6	747	716
7/20/23 10:16	6	750	720
7/20/23 10:17	6	754	723
7/20/23 10:18	6	758	728
7/20/23 10:19	6	762	733
7/20/23 10:20	6	767	737
7/20/23 10:21	6	769	740
7/20/23 10:22	6	771	742
7/20/23 10:23	6	775	746
7/20/23 10:24	6	777	750
7/20/23 10:25	6	781	754
7/20/23 10:26	6	785	758
7/20/23 10:27	6	787	758
7/20/23 10:28	6	792	763
7/20/23 10:28	6	794	765
7/20/23 10:25	6	796	766
7/20/23 10:30	6	796	766
1/20/23 10.31		750	700

7 (22 (22 4 2 22	6	700	700
7/20/23 10:32	6	798	769
7/20/23 10:33	6	801	772
7/20/23 10:34	6	803	774
7/20/23 10:35	6	804	775
7/20/23 10:36	6	807	778
7/20/23 10:37	6	808	779
7/20/23 10:38	6	811	784
7/20/23 10:39	6	815	787
7/20/23 10:40	6	818	790
7/20/23 10:41	6	825	798
7/20/23 10:42	6	825	798
7/20/23 10:43	6	824	797
7/20/23 10:44	6	826	799
7/20/23 10:45	6	825	798
7/20/23 10:46	6	828	800
7/20/23 10:47	6	831	803
7/20/23 10:48	6	835	806
7/20/23 10:49	6	838	810
7/20/23 10:50	6	840	812
7/20/23 10:51	6	841	814
7/20/23 10:52	6	843	816
7/20/23 10:53	6	847	819
7/20/23 10:54	6	850	822
7/20/23 10:55	6	850	822
7/20/23 10:56	6	850	823
7/20/23 10:57	6	851	824
7/20/23 10:58	6	852	824
7/20/23 10:59	6	855	827
7/20/23 11:00	6	861	835
7/20/23 11:01	6	866	839
7/20/23 11:02	6	865	839
7/20/23 11:03	6	867	840
7/20/23 11:04	6	868	841
7/20/23 11:05	6	867	840
7/20/23 11:06	6	868	842
7/20/23 11:07	6	868	842
7/20/23 11:08	6	871	846
7/20/23 11:09	6	874	848
7/20/23 11:10	6	877	852
7/20/23 11:11	6	881	856
7/20/23 11:12	6	881	856
7/20/23 11:12	6	881	855
7/20/23 11:14	6	883	857
7/20/23 11:15	6	887	861
7/20/23 11:15	6	891	866
7/20/23 11:17	6	897	871
7/20/23 11:17	6	900	873
7/20/23 11:10	6	900	873
1/20/23 11.13	5	500	075

	-		
7/20/23 11:20	6	901	875
7/20/23 11:21	6	904	878
7/20/23 11:22	6	905	880
7/20/23 11:23	6	906	881
7/20/23 11:24	6	909	882
7/20/23 11:25	6	910	885
7/20/23 11:26	6	912	886
7/20/23 11:27	6	915	888
7/20/23 11:28	6	915	887
7/20/23 11:29	6	917	889
7/20/23 11:30	6	918	890
7/20/23 11:31	6	920	892
7/20/23 11:32	6	922	895
7/20/23 11:33	6	923	895
7/20/23 11:34	6	924	897
7/20/23 11:35	6	927	899
7/20/23 11:36	6	929	902
7/20/23 11:37	6	933	907
7/20/23 11:38	6	936	908
7/20/23 11:39	6	939	910
7/20/23 11:40	6	942	914
7/20/23 11:41	6	946	919
7/20/23 11:42	6	945	919
7/20/23 11:43	6	949	922
7/20/23 11:44	6	952	923
7/20/23 11:45	6	952	924
7/20/23 11:46	6	953	924
7/20/23 11:47	6	955	926
7/20/23 11:48	6	959	931
7/20/23 11:49	6	959	930
7/20/23 11:50	6	962	936
7/20/23 11:51	6	965	938
7/20/23 11:52	6	963	937
7/20/23 11:53	6	964	936
7/20/23 11:54	6	968	941
7/20/23 11:55	6	969	943
7/20/23 11:56	6	970	943
7/20/23 11:57	6	974	947
7/20/23 11:58	6	978	951
7/20/23 11:59	6	978	951
7/20/23 12:00	6	976	950
7/20/23 12:01	6	976	950
7/20/23 12:02	6	979	953
7/20/23 12:03	6	983	955
7/20/23 12:04	6	983	956
7/20/23 12:05	6	985	958
7/20/23 12:06	6	988	961
7/20/23 12:07	6	988	961

7/20/22 12:00	C C	000	062
7/20/23 12:08	6	989	962
7/20/23 12:09	6	990	963
7/20/23 12:10	6	993	966
7/20/23 12:11	6	995	968
7/20/23 12:12	6	996	970
7/20/23 12:13	6	1000	974
7/20/23 12:14	6	1004	977
7/20/23 12:15	6	1007	980
7/20/23 12:16	6	1006	980
7/20/23 12:17	6	1007	980
7/20/23 12:18	6	1008	982
7/20/23 12:19	6	1010	983
7/20/23 12:20	6	1011	984
7/20/23 12:21	6	1013	986
7/20/23 12:22	6	1017	990
7/20/23 12:23	6	1017	991
7/20/23 12:24	6	1018	993
7/20/23 12:25	6	1017	991
7/20/23 12:26	6	1017	991
7/20/23 12:27	6	1019	993
7/20/23 12:28	6	1020	995
7/20/23 12:29	6	1025	998
7/20/23 12:30	6	1026	999
7/20/23 12:31	6	1029	1004
7/20/23 12:32	6	1032	1006
7/20/23 12:33	6	1030	1005
7/20/23 12:34	6	1030	1004
7/20/23 12:35	6	1031	1006
7/20/23 12:36	6	1035	1010
7/20/23 12:37	6	1039	1013
7/20/23 12:38	6	1037	1012
7/20/23 12:39	6.1	1036	1011
7/20/23 12:40	6	1033	1008
7/20/23 12:41	6	1034	1009
7/20/23 12:42	6	1036	1012
7/20/23 12:43	6	1038	1014
7/20/23 12:44	6	1041	1016
7/20/23 12:45	6	1041	1015
7/20/23 12:46	6	1041	1014
7/20/23 12:47	6	1042	1016
7/20/23 12:48	6	1042	1016
7/20/23 12:49	6	1043	1018
7/20/23 12:50	6	1045	1020
7/20/23 12:50	6	1049	1024
7/20/23 12:52	6	1049	1024
7/20/23 12:53	6	1049	1025
7/20/23 12:54	5.9	1053	1029
7/20/23 12:55	6.1	1055	1025

7/20/22 42 56	<u> </u>	1057	4022
7/20/23 12:56	6	1057	1032
7/20/23 12:57	6	1058	1033
7/20/23 12:58	6	1060	1036
7/20/23 12:59	6	1061	1037
7/20/23 13:00	6	1061	1036
7/20/23 13:01	6	1058	1033
7/20/23 13:02	6	1059	1035
7/20/23 13:03	6	1059	1033
7/20/23 13:04	6	1057	1033
7/20/23 13:05	6	1059	1035
7/20/23 13:06	6	1061	1036
7/20/23 13:07	6	1066	1041
7/20/23 13:08	6	1067	1043
7/20/23 13:09	6	1067	1043
7/20/23 13:10	6	1067	1044
7/20/23 13:11	6	1068	1044
7/20/23 13:12	6	1068	1044
7/20/23 13:13	6	1073	1049
7/20/23 13:14	6	1075	1050
7/20/23 13:15	6	1077	1051
7/20/23 13:16	6	1075	1051
7/20/23 13:17	6	1078	1054
7/20/23 13:18	6	1082	1059
7/20/23 13:19	6	1082	1059
7/20/23 13:20	6	1082	1058
7/20/23 13:21	6	1085	1061
7/20/23 13:22	6	1087	1064
7/20/23 13:23	6	1088	1066
7/20/23 13:24	6	1086	1062
7/20/23 13:25	6	1086	1061
7/20/23 13:26	6	1088	1064
7/20/23 13:27	6	1089	1064
7/20/23 13:28	6	1091	1067
7/20/23 13:29	6	1090	1066
7/20/23 13:30	6	1092	1069
7/20/23 13:31	6	1092	1071
7/20/23 13:32	6	1095	1071
7/20/23 13:32	6	1096	1071
7/20/23 13:33	6	1096	1071
7/20/23 13:35	6	1090	1074
7/20/23 13:36	6	1101	1074
7/20/23 13:30	6	1101	1080
7/20/23 13:37	6	1104	1080
7/20/23 13:38	6	1103	1081
7/20/23 13:39	6	1103	1079
7/20/23 13:40	6	1102	1079
7/20/23 13:41	6	1105	1081
7/20/23 13:42	6	1106	1083
//20/25 15:45	0	1100	2002

7/20/23 13:44	6	1108	1086
7/20/23 13:44	6	1109	1086
7/20/23 13:45	6	1105	1080
7/20/23 13:40	6	1110	1087
7/20/23 13:47	6	1108	1080
	6		
7/20/23 13:49		1107	1083
7/20/23 13:50	6	1108	1084
7/20/23 13:51	6	1110	1087
7/20/23 13:52	6	1114	1091
7/20/23 13:53	6	1113	1090
7/20/23 13:54	6	1115	1092
7/20/23 13:55	6	1117	1093
7/20/23 13:56	6	1118	1096
7/20/23 13:57	6	1117	1092
7/20/23 13:58	6	1117	1093
7/20/23 13:59	6	1121	1097
7/20/23 14:00	6	1122	1097
7/20/23 14:01	6	1120	1095
7/20/23 14:02	6	1122	1098
7/20/23 14:03	6	1126	1102
7/20/23 14:04	6	1127	1102
7/20/23 14:05	6	1127	1101
7/20/23 14:06	6	1124	1100
7/20/23 14:07	6	1126	1101
7/20/23 14:08	6	1127	1101
7/20/23 14:09	6	1127	1101
7/20/23 14:10	6	1128	1104
7/20/23 14:11	6	1130	1106
7/20/23 14:12	6	1131	1107
7/20/23 14:13	6	1132	1106
7/20/23 14:14	6	1129	1104
7/20/23 14:15	6	1131	1106
7/20/23 14:16	6	1132	1107
7/20/23 14:17	6	1132	1107
7/20/23 14:18	6	1132	1107
7/20/23 14:19	6	1129	1104
7/20/23 14:20	6	1129	1104
7/20/23 14:21	6	1131	1106
7/20/23 14:22	6	1132	1108
7/20/23 14:23	6	1130	1107
7/20/23 14:24	6	1130	1107
7/20/23 14:25	6	1131	1107
7/20/23 14:26	6	1134	1112
7/20/23 14:20	6	1134	1112
7/20/23 14:27	6	1139	1115
7/20/23 14:28	6	1139	1110
7/20/23 14:29	6	1142	1119
· · ·			
7/20/23 14:31	6	1145	1121

7/20/23 14:32	6	1146	1121
7/20/23 14:33	6	1141	1116
7/20/23 14:34	6	1142	1118
7/20/23 14:35	6	1141	1117
7/20/23 14:36	6	1142	1116
7/20/23 14:37	6	1142	1117
7/20/23 14:38	6	1142	1117
7/20/23 14:39	6	1144	1119
7/20/23 14:40	6	1142	1118
7/20/23 14:41	6	1140	1116
7/20/23 14:42	6.1	1143	1119
7/20/23 14:43	6	1146	1123
7/20/23 14:44	6	1145	1120
7/20/23 14:45	6	1144	1121
7/20/23 14:46	6	1146	1122
7/20/23 14:47	6	1148	1124
7/20/23 14:48	6	1147	1123
7/20/23 14:49	6	1149	1125
7/20/23 14:50	5.9	1148	1124
7/20/23 14:51	6	1150	1125
7/20/23 14:52	6	1149	1125
7/20/23 14:53	6	1149	1125
7/20/23 14:54	6	1152	1127
7/20/23 14:55	6	1152	1126
7/20/23 14:56	6	1152	1126
7/20/23 14:57	6	1157	1132
7/20/23 14:58	6	1162	1136
7/20/23 14:59	6	1165	1139
7/20/23 15:00	6	1161	1135
7/20/23 15:01	6	1157	1132
7/20/23 15:02	6	1155	1132
7/20/23 15:03	6	1159	1135
7/20/23 15:04	6	1161	1137
7/20/23 15:05	6	1161	1137
7/20/23 15:06	6	1160	1134
7/20/23 15:07	6	1157	1133
7/20/23 15:08	6	1160	1135
7/20/23 15:09	6	1165	1139
7/20/23 15:10	6	1169	1145
7/20/23 15:11	6	1163	1139
7/20/23 15:12	6	1161	1138
7/20/23 15:13	6	1161	1139
7/20/23 15:14	6	1163	1140
7/20/23 15:15	6	1165	1142
7/20/23 15:16	6	1166	1145
7/20/23 15:17	6	1165	1143
7/20/23 15:18	6.1	1168	1145
7/20/23 15:19	6	1165	1141

7/20/23 15:20	6	1166	1142
7/20/23 15:21	6	1165	1141
7/20/23 15:22	6	1167	1142
7/20/23 15:23	6	1170	1144
7/20/23 15:24	6	1172	1147
7/20/23 15:25	6	1171	1145
7/20/23 15:26	6	1168	1143
7/20/23 15:27	6	1170	1146
7/20/23 15:28	6	1178	1153
7/20/23 15:29	6	1180	1154
7/20/23 15:30	6	1181	1156
7/20/23 15:31	6	1182	1157
7/20/23 15:32	6	1179	1153
7/20/23 15:33	6	1179	1154
7/20/23 15:34	6	1180	1156
7/20/23 15:35	6	1184	1159
7/20/23 15:36	6	1183	1158
7/20/23 15:37	6	1185	1159
7/20/23 15:38	6	1188	1161
7/20/23 15:39	6	1190	1164
7/20/23 15:40	6	1195	1171
7/20/23 15:41	6	1192	1167
7/20/23 15:42	6	1191	1166
7/20/23 15:43	6	1189	1165
7/20/23 15:44	6	1193	1170
7/20/23 15:45	6	1194	1171
7/20/23 15:46	6	1195	1172
7/20/23 15:47	6	1194	1170
7/20/23 15:48	6	1194	1169
7/20/23 15:49	6	1196	1173
7/20/23 15:50	6	1200	1175
7/20/23 15:51	6	1199	1175
7/20/23 15:52	6	1195	1170
7/20/23 15:53	6	1199	1175
7/20/23 15:54	6	1199	1175
7/20/23 15:55	6	1198	1173
7/20/23 15:56	6	1198	1174
7/20/23 15:57	6	1201	1177
7/20/23 15:58	6	1204	1180
7/20/23 15:59	6	1205	1182
7/20/23 16:00	6	1208	1184
7/20/23 16:01	6	1211	1188
7/20/23 16:02	6	1212	1188
7/20/23 16:03	6	1210	1184
7/20/23 16:04	6	1209	1184
7/20/23 16:05	6	1205	1180
7/20/23 16:06	6	1202	1177
7/20/23 16:07	6	1205	1181

7/20/23 16:08	6	1207	1182
7/20/23 16:09	6	1207	1182
7/20/23 16:10	6	1205	1185
7/20/23 16:11	6	1210	1190
7/20/23 16:12	6.5	1214	1189
7/20/23 16:13	6.5	1215	1189
7/20/23 16:14	6.5	1211	1186
7/20/23 16:15	6.5	1211	1187
7/20/23 16:16	6.5	1213	1187
7/20/23 16:17	6.5	1214	1190
7/20/23 16:18	6.5	1217	1192
7/20/23 16:19	6.5	1217	1193
7/20/23 16:20	6.5	1212	1187
7/20/23 16:21	6.5	1208	1186
7/20/23 16:22	6.5	1208	1185
7/20/23 16:23	6.5	1213	1189
7/20/23 16:24	6.5	1215	1191
7/20/23 16:25	6.5	1217	1193
7/20/23 16:26	6.5	1220	1197
7/20/23 16:27	6.5	1223	1199
7/20/23 16:28	6.5	1225	1200
7/20/23 16:29	6.5	1225	1199
7/20/23 16:30	6.5	1227	1202
7/20/23 16:31	6.5	1227	1201
7/20/23 16:32	6.5	1231	1205
7/20/23 16:33	6.5	1230	1205
7/20/23 16:34	6.5	1230	1205
7/20/23 16:35	6.5	1232	1208
7/20/23 16:36	6.5	1236	1212
7/20/23 16:37	6.5	1240	1215
7/20/23 16:38	6.5	1240	1215
7/20/23 16:39	6.5	1240	1214
7/20/23 16:40	6.5	1237	1212
7/20/23 16:41	6.5	1238	1214
7/20/23 16:42	6.5	1239	1215
7/20/23 16:43	6.5	1246	1220
7/20/23 16:44	6.5	1251	1226
7/20/23 16:45	6.5	1256	1231
7/20/23 16:46	6.5	1255	1230
7/20/23 16:47	6.5	1254	1228
7/20/23 16:48	6.5	1248	1223
7/20/23 16:49	6.5	1248	1224
7/20/23 16:50	6.5	1253	1230
7/20/23 16:51	6.5	1255	1232
7/20/23 16:52	7	1253	1231
7/20/23 16:53	7	1255	1233
7/20/23 16:54	7	1255	1233
7/20/23 16:55	7	1264	1240

7/20/22 10:50	7	1267	1242
7/20/23 16:56	7	1267	1243
7/20/23 16:57	7	1267	1242
7/20/23 16:58		1266	1242
7/20/23 16:59	7	1270	1247
7/20/23 17:00	7	1272	1249
7/20/23 17:01	7	1270	1246
7/20/23 17:02	7	1269	1245
7/20/23 17:03	7	1270	1246
7/20/23 17:04	7	1275	1250
7/20/23 17:05	7	1273	1249
7/20/23 17:06	7	1273	1250
7/20/23 17:07	7	1277	1254
7/20/23 17:08	7	1275	1253
7/20/23 17:09	7	1277	1253
7/20/23 17:10	7.5	1275	1251
7/20/23 17:11	7.5	1274	1249
7/20/23 17:12	7.5	1272	1247
7/20/23 17:13	7.5	1278	1255
7/20/23 17:14	7.5	1286	1261
7/20/23 17:15	7.5	1289	1265
7/20/23 17:16	7.5	1294	1271
7/20/23 17:17	7.5	1298	1274
7/20/23 17:18	7.5	1301	1279
7/20/23 17:19	7.5	1297	1273
7/20/23 17:20	7.5	1298	1275
7/20/23 17:21	7.5	1299	1276
7/20/23 17:22	7.5	1301	1279
7/20/23 17:23	7.6	1307	1286
7/20/23 17:24	7.5	1313	1291
7/20/23 17:25	7.5	1310	1287
7/20/23 17:26	7.5	1311	1287
7/20/23 17:27	7.5	1312	1288
7/20/23 17:28	7.5	1312	1287
7/20/23 17:29	7.5	1314	1291
7/20/23 17:30	7.5	1320	1298
7/20/23 17:31	7.5	1321	1298
7/20/23 17:32	7.5	1324	1301
7/20/23 17:33	7.5	1332	1308
7/20/23 17:34	7.5	1329	1304
7/20/23 17:35	7.5	1325	1301
7/20/23 17:36	7.5	1321	1298
7/20/23 17:37	7.5	1319	1296
7/20/23 17:38	7.5	1319	1297
7/20/23 17:39	7.5	1315	1302
7/20/23 17:40	7.5	1325	1309
7/20/23 17:40	7.5	1340	1316
7/20/23 17:41	7.4	1340	1310
7/20/23 17:42	7.5	1344	1320
1/20/23 11.43	1.5	1345	TJCC

7/20/23 17:44	7.5	1344	1322
7/20/23 17:45	7.5	1346	1323
7/20/23 17:46	7.5	1346	1321
7/20/23 17:47	7.5	1352	1328
7/20/23 17:48	7.5	1356	1333
7/20/23 17:49	7.5	1359	1337
7/20/23 17:50	7.5	1357	1334
7/20/23 17:51	7.5	1358	1334
7/20/23 17:52	7.5	1358	1336
7/20/23 17:53	7.5	1358	1336
7/20/23 17:54	7.5	1360	1338
7/20/23 17:55	7.5	1362	1340
7/20/23 17:56	7.5	1362	1339
7/20/23 17:57	7.5	1362	1339
7/20/23 17:58	7.5	1363	1341
7/20/23 17:59	7.5	1360	1338
7/20/23 18:00	7.5	1361	1338
7/20/23 18:01	7.5	1366	1343
7/20/23 18:02	7.5	1371	1348
7/20/23 18:03	7.5	1374	1351
7/20/23 18:04	7.5	1373	1350
7/20/23 18:05	7.5	1369	1346
7/20/23 18:06	7.5	1368	1347
7/20/23 18:07	7.5	1371	1350
7/20/23 18:08	7.5	1372	1350
7/20/23 18:09	7.5	1372	1350
7/20/23 18:10	7.5	1374	1353
7/20/23 18:11	7.5	1378	1356
7/20/23 18:12	8	1375	1353
7/20/23 18:13	7.9	1377	1355
7/20/23 18:14	8	1378	1357
7/20/23 18:15	8	1381	1360
7/20/23 18:16	8	1385	1364
7/20/23 18:17	8	1385	1365
7/20/23 18:18	8	1388	1367
7/20/23 18:19	7.9	1392	1370
7/20/23 18:20	8	1388	1367
7/20/23 18:21	8	1387	1365
7/20/23 18:22	8	1387	1366
7/20/23 18:23	8	1384	1363
7/20/23 18:24	8.1	1384	1365
7/20/23 18:25	8	1384	1363
7/20/23 18:26	8	1383	1362
7/20/23 18:27	8	1386	1365
7/20/23 18:28	7.9	1391	1370
7/20/23 18:29	8	1400	1379
7/20/23 18:30	8	1405	1383
7/20/23 18:31	8	1411	1390

7/20/23 18:32	8	1412	1391
7/20/23 18:33	8	1408	1388
7/20/23 18:34	8	1405	1384
7/20/23 18:35	8.1	1404	1385
7/20/23 18:36	8	1408	1388
7/20/23 18:37	8	1412	1390
7/20/23 18:38	8	1417	1396
7/20/23 18:39	8	1418	1397
7/20/23 18:40	8	1416	1395
7/20/23 18:41	8	1411	1390
7/20/23 18:42	8	1410	1391
7/20/23 18:43	8	1412	1391
7/20/23 18:44	8.5	1418	1397
7/20/23 18:45	8.5	1421	1401
7/20/23 18:46	8.5	1428	1408
7/20/23 18:47	8.5	1429	1408
7/20/23 18:48	8.5	1433	1412
7/20/23 18:49	8.5	1428	1407
7/20/23 18:50	8.5	1426	1406
7/20/23 18:51	8.5	1426	1406
7/20/23 18:52	8.5	1436	1415
7/20/23 18:53	8.6	1435	1414
7/20/23 18:54	8.6	1440	1420
7/20/23 18:55	8.5	1438	1416
7/20/23 18:56	8.5	1441	1420
7/20/23 18:57	8.5	1440	1419
7/20/23 18:58	8.6	1436	1416
7/20/23 18:59	8.5	1440	1421
7/20/23 19:00	8.5	1443	1423
7/20/23 19:01	8.5	1443	1424
7/20/23 19:02	8.5	1450	1430
7/20/23 19:03	8.5	1449	1428
7/20/23 19:04	8.5	1452	1432
7/20/23 19:05	8.5	1449	1431
7/20/23 19:06	9	1450	1430
7/20/23 19:07	9	1456	1436
7/20/23 19:08	9	1460	1439
7/20/23 19:09	9	1462	1441
7/20/23 19:10	9	1461	1441
7/20/23 19:11	9	1461	1442
7/20/23 19:12	9	1462	1444
7/20/23 19:13	8.9	1463	1445
7/20/23 19:14	9	1461	1441
7/20/23 19:15	9	1461	1442
7/20/23 19:16	9	1469	1447
7/20/23 19:17	9	1469	1448
7/20/23 19:18	9	1470	1450
7/20/23 19:19	9	1471	1453

7/20/22 10:20	9	1474	1455
7/20/23 19:20			
7/20/23 19:21	9.1	1474	1454
7/20/23 19:22	9.5	1478	1458
7/20/23 19:23	9.5	1482	1463
7/20/23 19:24	9.5	1482	1464
7/20/23 19:25	9.5	1481	1464
7/20/23 19:26	9.5	1483	1465
7/20/23 19:27	9.5	1485	1466
7/20/23 19:28	9.5	1487	1470
7/20/23 19:29	9.6	1494	1478
7/20/23 19:30	9.5	1505	1487
7/20/23 19:31	9.5	1505	1486
7/20/23 19:32	9.5	1510	1491
7/20/23 19:33	9.5	1512	1492
7/20/23 19:34	9.5	1510	1491
7/20/23 19:35	9.5	1514	1497
7/20/23 19:36	9.5	1520	1503
7/20/23 19:37	9.5	1523	1506
7/20/23 19:38	9.5	1522	1505
7/20/23 19:39	9.5	1530	1513
7/20/23 19:40	10	1535	1517
7/20/23 19:41	10	1538	1520
7/20/23 19:42	10	1539	1520
7/20/23 19:43	10	1533	1514
7/20/23 19:44	10.1	1514	1495
7/20/23 19:45	10	1503	1484
7/20/23 19:46	10	1499	1480
7/20/23 19:47	10.6	1493	1475
7/20/23 19:48	10.5	1492	1473
7/20/23 19:49	10.5	1496	1476
7/20/23 19:50	10.4	1493	1473
7/20/23 19:51	10.5	1490	1470
7/20/23 19:52	10.5	1489	1471
7/20/23 19:53	10.5	1491	1473
7/20/23 19:54	10.5	1490	1472
7/20/23 19:55	10.5	1494	1476
7/20/23 19:56	10.5	1492	1473
7/20/23 19:57	10.6	1495	1477
7/20/23 19:58	10.5	1497	1480
7/20/23 19:59	10.4	1503	1486
7/20/23 20:00	10.5	1512	1495
7/20/23 20:01	10.6	1517	1501
7/20/23 20:02	10.4	1517	1500
7/20/23 20:02	10.4	1519	1501
7/20/23 20:03	10.5	1518	1501
7/20/23 20:04	10.5	1518	1501
7/20/23 20:05	10.5	1516	1499
7/20/23 20:00	10.5	1521	1504

10 5	1524	1506
		1509
		1519
		1518
		1519
		1516
		1513
		1517
		1518
		1522
		1529
		1534
		1538
		1542
11.5	1567	1547
11.6	1566	1547
11.5	1568	1549
11.5	1568	1550
11.5	1566	1547
11.5	1564	1545
11.5	1563	1545
11.5	1562	1543
11.5	1562	1545
11.6	1560	1542
11.5	1561	1543
11.5	1559	1542
11.5	1565	1547
11.5	1568	1550
11.5	1569	1552
11.5	1571	1555
12.4	1579	1563
12.5	1577	1561
12.5	1578	1561
12.5	1583	1568
12.6	1592	1577
12.5	1592	1576
	1594	1577
12.5	1592	1575
	1590	1573
		1572
		1576
		1583
		1582
		1579
		1581
		1593
		1596
12.5	1618	1602
	$ \begin{array}{r} 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 12.4 \\ 12.5 \\ 12.6 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 1$	10.5152610.4153611153611153411153411153411153411153611154011154711.5155311.6155711.5156311.5156311.5156611.5156811.5156811.5156811.5156611.5156611.5156211.5156211.5156211.5156211.5156211.5156211.5156211.5156111.5156211.5156511.5156511.5156911.5156911.5157112.5157712.5157812.5159212.5159212.5159212.5159312.5159312.5159912.5159912.5159912.5159912.5159912.5159912.5159912.5159912.5159912.5159912.5159812.5159812.5159812.5159812.5159812.5159812.61613

7/20/23 20:56	12.5	1629	1614
7/20/23 20:57	12.5	1628	1614
7/20/23 20:58	12.5	1625	1610
7/20/23 20:59	12.5	1629	1614
7/20/23 21:00	12.5	1631	1615
7/20/23 21:01	12.5	1628	1612
7/20/23 21:02	12.6	1634	1618
7/20/23 21:03	12.5	1636	1619
7/20/23 21:04	12.4	1637	1622
7/20/23 21:05	12.5	1642	1626
7/20/23 21:06	12.5	1648	1633
7/20/23 21:07	12.5	1653	1638
7/20/23 21:08	12.5	1656	1640
7/20/23 21:09	12.5	1660	1643
7/20/23 21:10	12.5	1666	1650
7/20/23 21:11	12.6	1665	1649
7/20/23 21:12	12.5	1670	1654
7/20/23 21:13	12.5	1669	1652
7/20/23 21:14	12.5	1667	1653
7/20/23 21:15	12.5	1669	1654
7/20/23 21:16	12.4	1672	1656
7/20/23 21:17	12.6	1675	1660
7/20/23 21:18	12.5	1677	1663
7/20/23 21:19	12.5	1680	1666
7/20/23 21:20	12.5	1685	1670
7/20/23 21:21	12.4	1688	1674
7/20/23 21:22	12.6	1692	1677
7/20/23 21:23	12.5	1690	1675
7/20/23 21:24	12.5	1686	1672
7/20/23 21:25	12.5	1689	1674
7/20/23 21:26	12.4	1688	1672
7/20/23 21:27	12.5	1687	1672
7/20/23 21:28	12.5	1691	1675
7/20/23 21:29	12.5	1690	1675
7/20/23 21:30	12.5	1692	1676
7/20/23 21:31	12.5	1692	1678
7/20/23 21:32	12.6	1693	1678
7/20/23 21:33	12.5	1696	1681
7/20/23 21:34	12.5	1697	1682
7/20/23 21:35	12.5	1699	1684
7/20/23 21:36	12.4	1697	1682
7/20/23 21:37	12.5	1701	1687
7/20/23 21:38	12.5	1707	1694
7/20/23 21:39	12.5	1715	1700
7/20/23 21:40	12.6	1715	1700
7/20/23 21:41	13.5	1712	1697
7/20/23 21:42	13.6	1708	1694
7/20/23 21:43	13.6	1708	1693

7/20/23 21:44	13.5	1707	1694
7/20/23 21:44	13.5	1706	1693
7/20/23 21:45	13.5	1700	1694
7/20/23 21:40	13.4	1705	1697
7/20/23 21:48	13.5	1711	1698
7/20/23 21:48	13.5	1712	1693
7/20/23 21:50	13.5	1708	1691
7/20/23 21:51	13.5	1706	1692
7/20/23 21:52	13.5	1700	1696
7/20/23 21:53	13.5	1710	1700
	13.6	1714	1700
7/20/23 21:54			
7/20/23 21:55	13.5	1726	1712
7/20/23 21:56	13.5 13.5	1730	1716
7/20/23 21:57		1735	1722
7/20/23 21:58	13.5	1739	1725
7/20/23 21:59	13.5	1738	1725
7/20/23 22:00	13.5	1733	1720
7/20/23 22:01	13.5	1732	1719
7/20/23 22:02	13.5	1735	1721
7/20/23 22:03	13.5	1738	1724
7/20/23 22:04	13.4	1740	1726
7/20/23 22:05	13.4	1741	1728
7/20/23 22:06	13.5	1738	1725
7/20/23 22:07	13.5	1741	1728
7/20/23 22:08	14.5	1743	1730
7/20/23 22:09	14.5	1740	1726
7/20/23 22:10	14.5	1738	1725
7/20/23 22:11	14.5	1742	1728
7/20/23 22:12	14.5	1746	1732
7/20/23 22:13	14.4	1751	1738
7/20/23 22:14	14.4	1754	1739
7/20/23 22:15	14.5	1756	1742
7/20/23 22:16	14.5	1760	1746
7/20/23 22:17	14.6	1769	1756
7/20/23 22:18	14.5	1769	1755
7/20/23 22:19	14.5	1762	1749
7/20/23 22:20	15.5	1762	1748
7/20/23 22:21	15.5	1762	1748
7/20/23 22:22	15.4	1763	1750
7/20/23 22:23	15.5	1767	1753
7/20/23 22:24	15.5	1770	1757
7/20/23 22:25	15.4	1768	1755
7/20/23 22:26	15.5	1767	1754
7/20/23 22:27	15.5	1772	1759
7/20/23 22:28	15.5	1770	1757
7/20/23 22:29	16.5	1770	1758
7/20/23 22:30	16.5	1775	1763
7/20/23 22:31	16.5	1773	1760

7/20/23 22:32	16.6	1776	1762
7/20/23 22:32	16.5	1781	1769
7/20/23 22:34	16.6	1779	1767
7/20/23 22:35	16.4	1783	1771
7/20/23 22:36	16.5	1789	1776
7/20/23 22:37	16.5	1793	1781
7/20/23 22:38	16.5	1795	1783
7/20/23 22:39	16.6	1797	1784
7/20/23 22:40	16.5	1795	1782
7/20/23 22:41	16.5	1793	1781
7/20/23 22:42	16.5	1793	1781
7/20/23 22:43	16.5	1794	1782
7/20/23 22:44	16.5	1798	1786
7/20/23 22:45	16.5	1804	1792
7/20/23 22:46	16.6	1809	1797
7/20/23 22:40	16.5	1805	1800
7/20/23 22:48	16.5	1812	1800
7/20/23 22:49	16.7	1814	1803
7/20/23 22:50	16.4	1816	1803
7/20/23 22:51	16.5	1820	1809
7/20/23 22:52	16.4	1822	1811
7/20/23 22:52	16.6	1824	1814
7/20/23 22:54	16.4	1828	1817
7/20/23 22:55	16.5	1832	1822
7/20/23 22:56	16.4	1837	1827
7/20/23 22:57	16.4	1837	1828
7/20/23 22:58	16.5	1845	1835
7/20/23 22:59	16.5	1848	1837
7/20/23 23:00	16.6	1848	1837
7/20/23 23:00	16.5	1854	1844
7/20/23 23:02	16.5	1854	1843
7/20/23 23:02	16.7	1857	1847
7/20/23 23:04	16.5	1856	1846
7/20/23 23:05	16.5	1856	1846
7/20/23 23:06	16.4	1859	1850
7/20/23 23:07	16.6	1835	1868
7/20/23 23:08	16.5	1902	1894
7/20/23 23:09	16.4	1902	1908
7/20/23 23:10	16.6	1922	1915
7/20/23 23:11	16.5	1925	1918
7/20/23 23:12	16.5	1922	1914
7/20/23 23:13	16.5	1921	1915
7/20/23 23:14	16.6	1922	1916
7/20/23 23:15	16.5	1923	1916
7/20/23 23:16	16.4	1922	1915
7/20/23 23:17	16.6	1927	1920
7/20/23 23:18	16.5	1931	1924
7/20/23 23:19	16.6	1933	1926

7/20/23 23:20	16.3	1937	1931
7/20/23 23:21	16.5	1937	1930
7/20/23 23:22	16.5	1940	1935
7/20/23 23:23	16.5	1948	1942
7/20/23 23:24	16.5	1952	1945
7/20/23 23:25	16.5	1952	1946
7/20/23 23:26	16.6	1956	1952
7/20/23 23:27	16.5	1958	1953
7/20/23 23:28	16.5	1966	1960
7/20/23 23:29	16.5	1974	1970
7/20/23 23:30	16.5	1978	1974
7/20/23 23:31	16.5	1977	1973
7/20/23 23:32	16.5	1979	1975
7/20/23 23:33	17.5	1972	1967
7/20/23 23:34	17.5	1932	1925
7/20/23 23:35	17.6	1908	1901
7/20/23 23:36	17.4	1906	1899
7/20/23 23:37	17.5	1907	1900
7/20/23 23:38	17.5	1908	1900
7/20/23 23:39	17.5	1910	1903
7/20/23 23:40	17.5	1905	1898
7/20/23 23:41	17.6	1906	1900
7/20/23 23:42	17.5	1909	1902
7/20/23 23:43	17.5	1915	1908
7/20/23 23:44	17.4	1923	1914
7/20/23 23:45	17.5	1912	1903
7/20/23 23:46	17.4	1906	1898
7/20/23 23:47	17.5	1907	1899
7/20/23 23:48	17.5	1906	1898
7/20/23 23:49	17.5	1904	1897
7/20/23 23:50	17.5	1903	1894
7/20/23 23:51	17.5	1904	1896
7/20/23 23:52	17.4	1904	1896
7/20/23 23:53	17.5	1905	1896
7/20/23 23:54	17.5	1907	1900
7/20/23 23:55	17.5	1912	1904
7/20/23 23:56	17.5	1911	1903
7/20/23 23:57	17.6	1912	1903
7/20/23 23:58	17.5	1918	1912
7/20/23 23:59	17.5	1931	1924
7/21/23 0:00	17.5	1923	1916
7/21/23 0:01	17.5	1919	1912
7/21/23 0:02	17.5	1911	1903
7/21/23 0:03	17.6	1913	1905
7/21/23 0:04	17.5	1909	1900
7/21/23 0:05	17.5	1907	1899
7/21/23 0:06	17.4	1903	1895
7/21/23 0:07	17.6	1905	1897

		1899
		1894
		1891
		1891
17.5	1899	1891
17.6	1901	1893
17.4	1897	1888
17.6	1896	1887
17.5	1893	1885
17.5	1892	1884
17.4	1893	1885
17.6	1893	1885
17.6	1891	1882
17.6	1890	1880
17.4	1890	1880
17.6	1887	1878
17.5	1885	1876
17.5	1883	1874
17.5	1876	1867
17.6	1870	1861
17.6	1872	1863
17.6	1873	1864
17.3	1869	1860
17.6	1868	1858
17.5	1865	1856
17.6	1864	1854
17.4	1864	1854
17.6	1859	1849
17.5	1860	1851
17.6	1859	1848
	1858	1848
17.6	1856	1846
		1847
		1848
17.5	1855	1846
		1846
		1841
		1842
		1842
		1845
		1844
		1839
		1839
		1846
		1850
		1847
		1843
18.5	1853	1843
	17.4 17.6 17.5 17.4 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.5 17.6 17.5 17.5 17.5 17.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.5 17.6 17.5 17.6 17.5 17.6 17.5 17.6 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 <t< td=""><td>17.6190217.4190017.6190017.5189917.6190117.7189717.6189617.5189317.5189317.6189317.6189317.6189317.6189317.6189317.6189317.6189317.6189117.6188717.5188517.5188517.5188317.5188517.5188317.5188517.6187017.6187217.6187317.6186917.6186817.5186517.6186417.5186517.6185917.5186017.6185917.5185617.5185617.5185517.5185617.5185617.5185617.5185617.5185017.5185017.5185017.5185017.6185417.5185017.5185017.5185017.5185017.5185617.5185617.5185617.5185617.5185617.5185617.51856</td></t<>	17.6190217.4190017.6190017.5189917.6190117.7189717.6189617.5189317.5189317.6189317.6189317.6189317.6189317.6189317.6189317.6189317.6189117.6188717.5188517.5188517.5188317.5188517.5188317.5188517.6187017.6187217.6187317.6186917.6186817.5186517.6186417.5186517.6185917.5186017.6185917.5185617.5185617.5185517.5185617.5185617.5185617.5185617.5185017.5185017.5185017.5185017.6185417.5185017.5185017.5185017.5185017.5185617.5185617.5185617.5185617.5185617.5185617.51856

7/21/23 0:56	18.5	1856	1847
7/21/23 0:57	18.5	1856	1847
7/21/23 0:58	18.4	1854	1845
7/21/23 0:59	18.4	1853	1845
7/21/23 1:00	18.4	1851	1842

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

))

)

)

)

IN THE MATTER OF:

AMENDMENTS TO 35 ILL. ADM. CODE 201, 202, AND 212

R 23-18(A)

(Rulemaking - Air)

CERTIFICATE OF SERVICE

I, the undersigned, certify that on this 15th day of March, 2024, I have electronically served a true and correct copy of **Second Pre-Filed Testimony of Bryan Higgins** by electronically filing with the Clerk of the Illinois Pollution Control Board and by e-mail upon the persons identified on the attached Service List.

My e-mail address is Alex.Garel-Frantzen@afslaw.com.

The number of pages in the e-mail transmission is 214.

The e-mail transmission took place before 5:00 p.m.

/s/ Alexander J. Garel-Frantzen

Alexander J. Garel-Frantzen

Dated: March 15, 2024

David M. Loring Alexander J. Garel-Frantzen ArentFox Schiff LLP, Attorneys for Rain CII Carbon LLC 233 S. Wacker Drive Suite 7100 Chicago, Illinois 60606 (312) 258-5521 David.Loring@afslaw.com Alex.Garel-Frantzen@afslaw.com AFDOCS:199710198.1